Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Phương Liên
Xem chi tiết
Phùng Gia Bảo
6 tháng 7 2019 lúc 10:44

\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)

\(\left(x-1+x-3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2\right]+\left[2\left(2-x\right)\right]^3=0\)

\(\left(2x-4\right)\left(x^2-2x+1-x^2+4x-3+x^2-4x+4\right)+\left(4-2x\right)^3=0\)

\(\left(2x-4\right)\left(x^2-4x+7\right)-\left(2x-4\right)^3=0\)

\(\left(2x-4\right)\left[x^2-4x+7-\left(2x-4\right)^2\right]=0\)

\(2\left(x-2\right)\left(x^2-4x+7-4x^2+16x-16\right)=0\)

\(2\left(x-2\right)\left(12x-3x^2-9\right)=0\)

\(6\left(x-2\right)\left(4x-x^2-3\right)=0\)

\(6\left(x-2\right)\left(3x-x^2+x-3\right)=0\)

\(6\left(x-2\right)\left[x\left(3-x\right)-\left(3-x\right)\right]=0\)

\(6\left(x-2\right)\left(3-x\right)\left(x-1\right)=0\)

\(\Rightarrow x=\left\{1;2;3\right\}\)

💋Bevis💋
6 tháng 7 2019 lúc 10:32

\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)

\(\Rightarrow x^3-2x^2+x-x^2+2x+1+x^3-6x^2+9x-3x^2+18x-27+64-64x+16x^2-32x+32x^2-8x^3=0\)

\(\Rightarrow-6x^3+36x^2-66x+36=0\)

\(\Rightarrow-6\left(x^3-6x^2+11x-6\right)=0\)

\(\Rightarrow\left(x^2-5x+6\right)\left(x-1\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)

=> x - 3 = 0 ; x - 2 = 0 hoặc x - 1 = 0

=> x = 3 ; x = 2 hoặc x = 1

Mitt
Xem chi tiết
Nguyễn Huy Tú
18 tháng 8 2021 lúc 22:14

Bài 1 : 

\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)

TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)

TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)

Vậy biểu thức ko có x thỏa mãn 

Bài 2 : 

\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2 

TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)

TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Mitt
Xem chi tiết
Akai Haruma
18 tháng 8 2021 lúc 19:05

Bài 4:

$x-2=|x+1|+|2x-3|\geq 0$

$\Rightarrow x\geq 2$

$\Rightarrow x+1>0; 2x-3>0$

$\Rightarrow |x+1|=x+1; |2x-3|=2x-3$. Khi đó:

$x+1+2x-3=x-2$

$\Leftrightarrow 3x-2=x-2\Leftrightarrow x=0$ (vô lý vì $0< 2$)

Vậy không tồn tại $x$ thỏa mãn.

Akai Haruma
18 tháng 8 2021 lúc 19:08

Bài 5:

Nếu $x\geq 3$ thì $|x-1|=x-1; |x-2|=x-2; |x-3|=x-3$. Khi đó:

$x-1+x-2+x-3=5$

$\Leftrightarrow 3x-6=5\Leftrightarrow x=\frac{11}{3}$ (tm)

Nếu $2\leq x< 3$ thì $|x-1|=x-1; |x-2|=x-2; |x-3|=3-x$. Khi đó:

$x-1+x-2+3-x=5$

$\Leftrightarrow 2x=5\Leftrightarrow x=\frac{5}{2}$ (tm)

Nếu $1\leq x< 2$ thì: $x-1+2-x+3-x=5$

$\Leftrightarrow 4-x=5\Leftrightarrow x=-1$ (không tm)

Nếu $x< 1$ thì: $1-x+2-x+3-x=5$

$\Leftrightarrow 6-3x=5\Leftrightarrow x=\frac{1}{3}$ (tm)

Vậy......

Chi Khánh
Xem chi tiết
Mitt
Xem chi tiết
Akai Haruma
18 tháng 8 2021 lúc 19:18

Bài 1:

$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$

$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:

$2x-1=x-1\Leftrightarrow x=0$  (không thỏa mãn vì $x\geq 1$)

Vậy không tồn tại $x$ thỏa đề.

 

Akai Haruma
18 tháng 8 2021 lúc 19:19

Bài 2:

Nếu $x\geq \frac{1}{3}$ thì:

$3x-1=2x+3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{3}$ thì:

$1-3x=2x+3$

$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)

Vậy......

Akai Haruma
18 tháng 8 2021 lúc 19:20

Bài 3: Xét các TH sau:

TH1: $x\geq 2$ thì:

$x-1+x-2=3$

$2x-3=3$

$2x=6$

$x=3$ (thỏa mãn)

TH2: $1\leq x< 2$ thì:

$x-1+2-x=3$

$1=3$ (vô lý- loại)

TH3: $x< 1$

$1-x+2-x=3$

$3-2x=3$

$2x=0$

$x=0$ (thỏa mãn)