Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nho Dũng
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Đào Thị Nguyet
Xem chi tiết
Nguyen Thi Mai Anh
30 tháng 12 2015 lúc 21:59

giả sử 1 số chính phương tận cùng là 6 mà có chữ số hàng chục là chẵn thì số chính phương đó tận cùng bằng 06, 26, 46, 66, 86. các số chính phương này không chia hết cho 4 (1). số chính phương có tận cùng bằng 6 thì chia hết cho 2. số chính phương phải chứa thừa số nguyên tố với số mũ chẵn do đó mọi số chính phương tận cùng bằng 6 phải chia hết cho 4 (2)

từ (1) và (2) => vô lý.

vậy số chính phương có tận cùng bằng 6 thì có chữ số hàng chục lẻ. 

Nhóc Song Ngư
Xem chi tiết
Lưu Thiện Việt Cường
23 tháng 12 2016 lúc 21:04

Gọi số đó là A6 

ta có số có tận cung f là 6( số chẵn )

=> số đó chia hết cho 2

mà số đó là số chính phương => số đó chia hết cho 4

=> hai chữ số tận cùng chia hết cho 4

=> hai chữ số tận cùng thuộc tập hợp 16 ;36;56;76;96

=> ĐPCM

k mình nha

Real Madrid
Xem chi tiết
Ngô Thu Hiền
Xem chi tiết
Akai Haruma
30 tháng 6 2019 lúc 14:10

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

Akai Haruma
30 tháng 6 2019 lúc 14:19

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

mai thành đạt
Xem chi tiết
Hùng Hoàng
18 tháng 9 2015 lúc 0:53

do tận cùng 6 nên ta tách số chính phương đó thành A6 với A là số tự nhiên muốn bao nhiêu cx dc ta có             (A6)2 = 100A+120A +36 

chữ số hàng chục sẽ là 2A+3 100% là lẻ đấy 

 

Ngô Thu Hiền
Xem chi tiết
Nhóc Song Ngư
Xem chi tiết
Trần Hoàng Nam
23 tháng 12 2016 lúc 21:46

ta có số chính phương chẵn chia hết cho 2 suy ra số chính phương đó chia hết cho 4

suy ra số được tạo bởi 2 chữ số hàng chục và trăm chia hết cho 4

suy ra chữ số hàng đơn vị và hàng chục phải chẵn(dpcm)

Nguyễn Hoàng Bảo My
7 tháng 8 2018 lúc 21:21

Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.