cho x,y,z>0 và x+y+z+xy+yz+xz=6 tìm giá trị nhỏ nhất của \(Q=x^2+y^2+z^2\)
cho x,y,z>0 thỏa mãn \(x+y+z\ge2019\)tìm giá trị nhỏ nhất của \(T=\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\)
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
Cho x,y,z >0 . Tìm giá trị lớn nhất của \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
cho x,y,z là các số thực thỏa mãn x^2 + y^2 + z^2 =1.
a, Tim min và max của xy + yz - xz
b,CMR ko tồn tại bộ số hữu tỉ (x,y,z) để đạt được giá trị lớn nhất và nhỏ nhất của xy+yz-xz
Cho ba số nguyên x,y,z thỏa mãn x^2+y^2+z^2=1. Tìm giá trị nhỏ nhất của biểu thức:
Xy/z +xz/y + yz/x
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)
Cho x , y , z là các số dương và xy + yz + xz = 3 . Tìm giá trị nhỏ nhất của biểu thức :A=\(\dfrac{x^2}{z\left(z^2+x^2\right)}+\dfrac{y^2}{x\left(x^2+y^2\right)}+\dfrac{z^2}{y\left(y^2+z^2\right)}\)
cho x,y,z >0 thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\) Tìm giá trị nhỏ nhất của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
theo sách nâng cao và phát triển toàn 9 ta có \(A\ge\frac{x+y+z}{2}\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{2}\)
cho x,y,z >0 thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
khi đó giá trị nhỏ nhất của A=\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
lÀ .....
áp dụng bđt Schwarz thôi mak :
A >/ (x+y+z)/2
phần còn lại là c/m x+y+z >/ căn xy + căn yz + căn zx >/ 1 =>A >/ 1/2
thật lòng xin lỗi anh chị , em mới hok lớp 6 hà !!!!!!
i don no kho vai @@@@@@@@@@@@@@@@@@@@@@@@@@@@
cho x,y,z khác 0 thỏa mãn xy/x+y=yz/y+z=xz/x+z
tính giá trị của M=\(\frac{x^2+y^2+z^2}{xy+xz+yz}\)