1. so sánh phân số sau: ( Nhớ khi cả cách làm )
a) \(\frac{2009}{2010}và\frac{2010}{2011}\)
So sánh : \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}vàB=\frac{2008+2009+2010}{2009+2010+2011}\)
So sánh A và B biết
A=\(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
B=\(\frac{2009+2010+2011}{2010+2011+2012}\)
A=2.998508205
B=0.999502735
suy ra A>B
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
So sánh : A=\(\frac{2008}{2009}\)+\(\frac{2009}{2010}\)+\(\frac{2010}{2011}\)và B=\(\frac{2008+2009+2010}{2009+2010+2011}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}=\frac{2009}{2009+2010+2011}=\frac{2010}{2009+2010+2011}\)
\(< A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh:
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
so sánh A và B
so sánh \(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2010}{2009}và3\)
so sánh \(\frac{-22}{45}\)và\(\frac{-51}{103}\)
so sánh \(\frac{2009^{2009}+1}{2009^{2010}+1}\)và\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
So sánh : \(A=\frac{2009^{2009}+1}{2009^{2010}+1}\)và \(B=\frac{2009^{2010}-2}{2009^{2011}-2}\)
Giải hẳn ra nhé
2009A=2009^2010+2009/2009^2010+1 2009B=2009^2011-4018/2009^2011-2
2009A=1 + 2009/2009^2010+1 B=1 - 4016/2009^2011-2
mình viết tách ra cho khỏi nhầm
vì A>1 và B<1
nên A>B
VẬY A>B AND kết bạn nha
A=2009^2009+1/2009^2010+1 B=2009^2010-2/2009^2011-2
A=(2009^2009+1).10/2009^2010+1 B=(2009^2010-2).10/2009^2011-2
A=2009^2010+10/2009^2010+1 B= 2009^2011-20/2009^2010-2
A=(2009^2010+1)+9/2009^2010+1 B=(2009^2011-2)-18/2009^2010-2
A=1 + 9/2009^2010+1 B=1+(-18/2009^2010-2)
Vì 9/2009^2010+1 > (-18/2009^2010-2)
=>1 + 9/2009^2010+1>1+(-18/2009^2010-2)
Hay 2009^2009+1/2009^2010+1 > 2009^2010-2/2009^2011-2
Vậy A>B
NO!!!!!!!!!!!!!!!!!!!!BÀI MÌNH SAI NHA