Chứng tỏ rằng không thể tồn tại hai số tự nhiên a và b mà 36a + 12b = 24302
Tìm a,b thuộc N thỏa
36a+12b=24302
\(36a+12b=24302\)
\(2.12a+2.6b=24302\)
\(2.\left(12a+6b\right)=24302\)
\(2.\left(12a+6b\right)=12151.2\)
\(\Rightarrow12a+6b=12151\)
Chứng tỏ rằng ko thể tồn tại 1 số tự nhiên mà chia 21 dư 7 và chia 84 dư 3
hình như là 28:21 dư 7. 87:84 dư 3 mà
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
Xin lỗi về phần giải trước do nhầm đề bài nên nó không đúng đâu nha
chứng tỏ rằng trong các số tự nhiên khác nhau bao gồm 2015 chữ số 8 và 2016 chữ số 1 không tồn tại số mà số này là ước của số kia
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
chứng tỏ rằng trong các số tự nhiên khác nhau bao gồm 2015 chữ số 8 và 2016 chữ số 1 không tồn tại 2 số mà số này là ước của số kia
1
a) Tìm tất cả các số tự nhiên n để 1+2+2^ +... + 2^2n-1 là số nguyên tố. b) Chứng minh rằng tồn tại 2023 số tự nhiên liên tiếp mà tất cả các số đều là hợp số. Nêu nhận định tổng quát và chứng minh nhận định đó. Câu 2.
a) Chứng tỏ rằng S=1+3+3^2 +...+3^2022 không là số chính phương.
b) Tìm số chính phương n mà tổng các chữ số của n bằng 2024.
chứng minh rằng không tồn tại các số tự nhiên a, b, c nào mà a.b.c+a=333, a.b.c+c=341
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
tui có đăng j đâu ma noi j ki za
ban kì quá à
Hãy chứng minh rằng không tồn tại các số tự nhiên a,b,c nào mà a.b.c+a=333
sai đề rùi bạn
đề pải zầy nè
chug mih rag ko ton tai cac so tu nhien a,b,c nào ma
a.b.c+a=333 ; a.b.c+b=335 ; a.b.c+c= 341