Cho 5 số tự nhiên bất kỳ. Chứng minh ta luôn chọn được 3 số có tổng chia hết cho 3
Cho 5 số tự nhiên bất kỳ,chứng minh rằng luôn chọn được 3 số có tổng chia hết cho 3
Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
a) Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
b) Chứng minh rằng trong 5 số tự nhiên bất kỳ bao giờ cũng chọn được 2 số có hiệu chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
cho 5 số tự nhiên bất kì . CMR ta luôn chọn được 3 số có tổng chia hết cho 3
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3
số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
ọi 5 số bất kì là a1,a2,a3,a4,a5
theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
TH2 :chỉ có 2 số có cùng số dư khi chia cho 3
GS a1≡a2≡r(mod 3);a3≡a4(mod 3)
nếu r=0 thì a1+a3+a5 chia hết cho 3
nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3
tương tự với r=2
Gọi 5 số bất kì là a1,a2,a3,a4,a5
Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
TH2 :chỉ có 2 số có cùng số dư khi chia cho 3
GS a1 = a2 = r ( mod3 ) ; a3 = a4 ( mod3 )
Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3
Nếu r = 1 thì a3 = 3k + 2 or a3 = 3k nên a1 + a3 + a5 chia hết cho 3
Tương tự với r = 2
cho năm số tự nhiên bất kì chứng minh rằng ta luôn chọn được 3 số có tổng chia hết cho 3
các bạn giúp mình trình bày ra nhé!!!!!!!!!!!!!1
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Chứng minh rằng từ 6 số tự nhiên bất kỳ luôn có thể chọn được 2 số mà hiệu giữa chúng chia hết cho 5
cho 7 số tự nhiên bất kì chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4
Bạn tham khảo bài tương tự ở đây nhé.
Bài toán 120 - Học toán với OnlineMath
- Nếu cả 9 số đó đều chia hết cho 5 thì ta luôn chọn được 5 số có tổng chia hết cho 5 (đpcm)
- Nếu trong 9 số đó có lẫn cả số chia hết cho 5 và số không chia hết cho 5 hoặc chỉ gồm toàn số không chia hết cho 5 thì sẽ có 2 trường hợp xảy ra:
+ TH1: Nếu trong 9 số đó có ≥ 5 số cùng dư trong phép chia cho 5. Giả sử 5 số cùng dư là: 5.m + b; 5.n + b; 5.x + b; 5.y + b; 5.z + b (b là số dư)
Tổng của 5 số bất kì cùng dư trong phép chia cho 5 là:
(5.m + b) + (5.n + b) + (5.x + b) + (5.y + b) + (5.z + b)
= 5.(m + n + x + y + z) + 5b chia hết cho 5 (đpcm)
+ TH2: Nếu trong 9 số có < 5 số cùng dư trong phép chia cho 5 thì sẽ có 5 số nhận các loại dư khác nhau là dư 0; 1; 2; 3; 4
Giả sử các số đó là: 5.a; 5.b + 1; 5.c + 2; 5.d + 3; 5.e + 4
Tổng của 5 số trên là:
5.a + (5.b + 1) + (5.c + 2) + (5.d + 3) + (5.e + 4)
= 5.(a + b+ c + d + e) + 10 chia hết cho 5 (đpcm)
Vậy trong 9 số tự nhiên bất kì luôn chọn được 5 số có tổng chia hết cho 5 (đpcm)
Cho bảy số tự nhiên bất kì, Chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4
Gọi 7 số đó lần lượt là a1 , a2 , ... , a7 .
Ta chọn được hai số có tổng chia hết cho 2, chẳng hạn a1 + a2 = 2k1 . Còn lại 5 số, lại chọn được hai số có tổng chia hết cho 2, chẳng
hạn a3 + a4 = 2k2
Còn lại 3 số, lại chọn được hai số có tổng chia hết cho 2, chẳng hạn a5 + a6 = 2k3
Xét ba số k1 , k2 , k3 ta chọn được hai số có tổng chia hết cho 2, chẳng hạn k1 + k2 = 2q
Như vậy : 2k1 + 2k2 = 4q hay a1 + a2 + a3 + a4 = 4q \(⋮\)4
Gói 7 thì lần lượt sẽ là :"
a1 , a2 ... => a7 .
Chọn đc 2 số có tổng chia hết cho 2 là : ( ví dụ )
a1 + a2 = 2k1
Vậy còn lại 5 số ! tiếp tục chọn tổng số chia hết cho 2
a3 + a4 = 2k2
Còn lại 3 số ! : a5 + a6 = 2k3
3 số : ta sẽ chọn số chia hết cho 2 :
Như vậy ta có thể làm :
k1 + k2 = 2q
2k1 + 2k2 = 4q
a1 + a2 + a3 + a4 = 4q : 4
Đáp số : .....
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
Cho bảy số tự nhiên bất kì , chứng minh rằng ta luôn chọn được bốn số có tổng chia hết cho 4
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)
A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2
* Giả thử (A+B) =2 m và (D+E)=2n –> (A+B) + (C+D)= 2(m+n)
Còn 3 số C F G sẽ có 1 cặp chia hết cho 2
( C + F) = 2 p Với m,n,p cúng là số tự nhiên
Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.
*Giả thử (m + n) =2 q ( q là số TN) thì ta có
(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)
Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4
chứng minh rằng trong 3 số tự nhiên không số nào chia hết cho 3, luôn có tổng của2 số hay 3 số bất kỳ trong đó chia hết cho 3
Gọi 3 số tự nhiên không chia hết cho 3 lần lượt là : 3k + 1 ; 3k + 2 ; 3k + 4
Xét 3k + 1 + 3k + 2
= 6k + 3 chia hết cho 3