Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Long
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:22

4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.

Nguyễn Tuệ Minh Thu
Xem chi tiết
Luu Thu Thuy
Xem chi tiết
magic
Xem chi tiết
Trafalgar
2 tháng 11 2016 lúc 15:38

THEO ĐỀ RA : 3Y+1 CHIA HẾT CHO X VÀ 3X+1 CHIA HẾT CHO Y

NHÂN X với y

ta có: 9xy+1chia hết xy

1 chia hét cho xy

x và y thuộc ước của 1 thuộc 1 (x,y thuộc N sao)

nếu xy=1 suy ra x=1 y=1

Tinker
Xem chi tiết
Tài Nguyễn Tuấn
14 tháng 8 2015 lúc 20:57

1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 
----------- 

Vũ lệ Quyên
14 tháng 8 2015 lúc 21:48

mk bái phục bạn Tài Nguyễn Tuấn

Valentino Rossi
18 tháng 8 2015 lúc 15:54

 Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp. 
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì? 
------ 
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm. 
Tôi dùng phương pháp "cần cù" 
--------------- 
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 
----------- 
Tất nhiên là tôi chưa kiểm tra lại

Nguyễn Văn phong
Xem chi tiết
dieu huyen
29 tháng 9 2015 lúc 12:34

phong lop may z bai nay kho lam hay la ket ban voi mik di

Tú Trần
Xem chi tiết
Trần Quang Sáng
Xem chi tiết
thaoanh le thi thao
Xem chi tiết
Ngọc Đũyy
12 tháng 4 2016 lúc 20:17

y=2;x=1