\(y=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{99.100}\)
\(B=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+.......+\frac{1}{100}\)
TÍNH GIÁ TRỊ CỦA : Y - B = ?
Tính E=\(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}}\)
đặt A = 1/1*2 + 1/3*4 + 1/5*6 + ... + 1/99*100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100
= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50
= 1/51 + 1/52 + 1/53 + ... + 1/100
thay vào ra E = 1
Biến đổi mẫu ta được:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)
Đặt \(P=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Vậy E = 1
Tính:
\(P=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}}\)
Gọi \(Q=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow Q=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-2\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(\Rightarrow Q=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow P=1\)
Tính \(E=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..+\frac{1}{99.100}}\)
Tính $E=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..+\frac{1}{99.100}}$E=151 +152 +153 +....+1100 11.2 +13.4 +15.6 +..+199.100
Toán lớp 6
Rút gọn mẫu ta được:
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\)
Vì tử và mẫu bằng nhau nên biểu thức bằng 1
Bạn muốn biết cách rút gọn mẫu thì gửi tin nhắn cho mình
tính A-B biết
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)
\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Nhầm tưởng tính tích :v
Ta có :
\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=50.\frac{1}{51}=\frac{50}{51}< \frac{99}{100}\)
\(\Leftrightarrow A>B\)
~ Rim Ceil ~:Chuyên Quốc Học ở đâu thì ko biết nhưng bài như thế này mak làm sai~
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+....+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow A-B=0\)
Tính
\(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}}\)
ai làm được làm đúng mình sẽ tích
đặt A =1/1.2+1/3.4+1/5.6+...+1/99.100
A=1/1-1/2+1/3-1/4+...+1/99-1/100
A=1+1/2+1/3+...+1/100-2(1/2+1/4+...+1/100)
A=1+1/2+1/3+...+1/100-1-1/2-1/3-...-1/50
A=1/51+1/52+...+1/100
=>D=1
D là dãy số đã cho nha bn
nếu đúng thì k nha
chứng minh: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Xét vế trái: A\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
=>\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)
=>đpcm (VP là vế phải)
A = \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=> A = 1
CMR: \(\frac{1}{1.2}+\frac{1}{3.4}\)\(+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{51}+\frac{1}{52}\)\(+\frac{1}{53}+...+\frac{1}{100}\)
1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100
= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 )
= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 )
= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 )
= 1/51 + 1/52 + ...+ 1/100
Tham khảo nha !!!
\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) (đpcm)
\(ChoA=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\);
\(B=\frac{2013}{51}+\frac{2013}{52}+\frac{2013}{53}+...+\frac{2013}{100}\)
Chứng minh rằng: \(\frac{B}{A}\) có giá trị nguyên