-Tính \(A=\frac{\sqrt{18}}{\sqrt{8}}+\frac{\sqrt{8}}{\sqrt{50}}\)
Thực hiện phép tính: \(\frac{\left(3\sqrt{8}-6\sqrt{\frac{1}{2}}-2\sqrt{18}+3\sqrt{50}\right)}{\frac{1}{2}\sqrt{24,5}-\sqrt{4,5}+\frac{3}{4}\sqrt{12,5}}\)
Thực hiện phép tính: \(\left(3\sqrt{8}-6\sqrt{\frac{1}{2}}-2\sqrt{18}+3\sqrt{50}\right)\div\left(\frac{1}{2}\sqrt{24,5}-\sqrt{4,5}+\frac{3}{4}\sqrt{12,5}\right)\)
Thực hiện phép tính:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d)\(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
Tính : a) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
rut gon:
a)\(3\sqrt{8}-4\sqrt{18}+2\sqrt{50}\)
b)\(5\sqrt{12}+2\sqrt{75}-5\sqrt{48}\)
c)\(\frac{a}{b}\sqrt{\frac{b}{a}}-\frac{1}{a}\sqrt{a^3b}+\frac{2}{3b}\sqrt{9ab^3}\left(a,b>0\right).\)
Tính : a)\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tinh
a, \(3\sqrt{50}-2\sqrt{98}-5\sqrt{18}-\sqrt{63}-2\sqrt{28}\)
b, \(\sqrt{42-10\sqrt{17}}+\sqrt{3-8\sqrt{17}}\)
c, \(\frac{4}{\sqrt{3}+1}+\frac{6}{\sqrt{3}-3}-\frac{5}{\sqrt{3}-2}\)
Tính: \(\frac{2\sqrt{8}-\sqrt{27}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
M=\(\frac{1+ab}{a+b}-\frac{1-ab}{a-b}\)
với a=\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b=\(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Tính M