PTDTTNT x5+x+1
PTDTTNT: x(x+1)(x+2)(x+3)+1
ta có:
x(x + 1)(x + 2)(x + 3) + 1
x(x + 3)[(x + 1)(x + 2)] + 1
(x² + 3x)(x² + 3x + 2) + 1
(x² + 3x)(x² + 3x) + 2(x² + 3x) + 1
(x² + 3x + 1)² = 0
Ta có: x(x+3).(x+1)(x+2) + 1 = (x^2 + 3x)(x^2 + 3x + 2) + 1 (*)
Đặt x^2 + 3x =t khi đó (*) trở thành:
t(t+2) + 1 = t^2 + 2t + 1
= (t+1)^2 (1)
Thay t=x^2+3x vào(1)=> (x^2 + 3x + 1)
Đây là cách giải thường được AD cho những dạng toán như thế này.Nhưng bài này cũng có thể giải như bạn đã trả lời câu hỏi này trước mình
ptdttnt
x^20+x+1
\(x^{20}+x+1=\left(x^{20}-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^{18}-1\right)+x^2+x+1\)
\(=x^2\left(x^6-1\right)\left(x^{12}+x^6+1\right)+x^2+x+1\)
\(=\left(x^{14}+x^8+x^2\right)\left(x^6-1\right)+x^2+x+1\)
\(=\left(x^{14}+x^8+x^2\right)\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\left(x^2+x+1\right)\)
PTDTTNT:
(x+1)4+(x2+x+1)
Ptdttnt
x8+1
PTDTTNT a , x^9 - x^7 - x^6 - x^5 +x^4 + x^3 + x^2 + 1
Ptdttnt : A=(x+1)4+(x+3)4-2
PTDTTNT
\(x^2-x+1\)
Bạn viết rõ đề bài ra đi
- Đa thức x2 - x + 1 ko phân tích được thành nhân tử vì nếu phân tích được thì phải có nghiệm ; mà :
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) > 0 với mọi x nên vô nghiệm.
PTDTTNT
(x+1)2+3x(x2+1)+2x2
PTDTTNT
a) (x^2+x)^2+3(x^2+x)+2
b) (1+x^2)^2-4x(1-x^2)