chứng minh rằng ab + ba chia hết cho 11
các bạn làm cho mình rồi mình tick cho
chứng minh rằng tích 3 số tự nhiên liên tiếp chia hết cho 3
các bạn làm xong bài này vơi bài kia rồi mình tick cho
trong 3 số tự nhiên liên tiếp,luôn có 1 số chia hết cho3
vậy nhân lên bao nhiêu đi nx thì tích đó vẫn chia hết 3
vậy tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
Câu 1 : Cho abc = 2deg. Chứng minh abcdeg chết hết cho 29
Câu 2 : Cho abcd chia hết cho 101. Chứng minh ab-ed = 0 và ngược lại
Câu 3 Cho abcd chia hết cho 39 thì ab+ cd+ ed chia hết cho 9 và ngược lại
Các bạn hưỡng dẫn cách làm nhé ! Mai là mình cần rồi ! Ai đúng mình tick cho !
a/ abcdeg = 1000.abc + deg = 1000.2.deg + deg = 2001.deg = 29.69.deg chia hết cho 29
b/ abcd = 100.ab + cd = 101.ab -ab + cd =101.ab - (ab - cd)
abcd chia hết cho 101, mà 101.ab chia hết cho 101 nên ab - cd cũng phải chia hết cho 101
Mà ab<=99 và cd<=99 nên |ab - cd|<=99 => |ab - cd| không chia hết cho 101 => |ab - cd|=0 => ab = cd hay ab = cd
Ngược lại ab = cd
=> abcd = 100.ab + cd = 100.ab + ab = 101.ab chia hết cho 101
c/ Câu c lấy e ở đâu ra. Câu b cũng thế nhưng có thể hiểu là bạn viết nhầm c thành e
CHỨNG MINH RẰNG AB + BA CHIA HẾT CHO 11
NHANH NHA CÁC BẠN AI LÀM XONG NHANH NHẤT VÀ ĐÚNG MÌNH TICK CHO
Ta có : ab + ba = ( 10a + b ) + ( 10b +a )
= 11a +11b
= 11( a + b ) chia hết cho 11
Vậy ab + ba chia hết cho 11
Ta có :
\(\left(ab+ba\right)\)
\(=\left(10a+b\right)+\left(10b+a\right)\)
\(=10\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)\left(10+1\right)\)
\(=11\left(a+b\right)⋮11\left(đpcm\right)\)
P/s : Đúng nha
~ Ủng hộ nhé
CHỨNG MINH RẰNG AB - BA CHIA HẾT CHO 9 VỚI A > B
NHANH NHA CÁC BẠN MÌNH SỄ TICK CHO AI LÀM NHANH NHẤT VÀ ĐÚNG
ta có
ab-ba =10a+b-10b-a=10(a-b)-(a-b)=(a-b)(10-1)=9(a-b) chia hết cho 9 vì a>b
=>đpcm
Đơn giản :
AB - BA = 98 -89 = 9
Mà 9 chia hết cho 9
Kết luận : Các số có 2 chữ số như AB mà đổi ngược số đó sẽ thành BA mà các số ngược như vậy đều có hiệu là 9; 18; 27; 36; 45; 54; 63; ... mà trong bài A > B
A có thể bằng 9; 8; 7; 6; 5; 4; 3; 2; 1
B có thể bằng 8; 7; 6; 5; 4; 3 ;2; 1; 0
Chứng minh rằng:
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 ( a > b )
c) abba chia hết cho 11
Trình bày cách làm nữa nha, rồi mk tick cho!!!
làm thế này nha bn
a) ab + ba = 10a + b + 10b + b = 11a + 11b = 11(a+b) chia hết 11
b) ab - ba = 10a + b - (10b - a) = 10a + b - 10b - a = 9a - 9b = 9(a-b) chia hết 9
c) abba = 1000a + 100b + 10b + a = 1001a + 110b = 11(91a+10b) chia hết 11
mik nha bn
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a + 9b = 9(a + b) chia hết cho 9
abba = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
T nhé
Chứng tỏ rằng :
A. Số abcabc chia hết cho 11.
B. Số (ab-ba) chia hết cho 9.
C. Số (ab+ba) chia hết cho 11.
Mong các bạn giúp đỡ mình nha. Nhanh nhanh giúp mình nhé vì ngày mai mình phải nộp rồi. Cảm ơn nhiều 😊
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
cho bốn số a,b,c,d biết rằng a>b>c>d. Chứng minh rằng tích tất cả các hiệu của 4 số đã chia hết cho bốn
các bạn làm xong rồi mình tick cho
Giả sử trong \(4\)số đã cho \(a,b,c,d\)có \(2\)số có cùng số dư khi chia cho \(4\). Giả sử hai số đó là \(a,b\)khi đó \(a-b\)chia hết cho \(4\)nên tích các hiệu của bốn số chia hết cho \(4\).
Nếu trong \(4\)số đã cho không có số nào chia hết cho \(4\), khi đó số dư của các số khi chia hết cho \(4\)là: \(0,1,2,3\).
Giả sử \(a\)chia cho \(4\)dư \(3\), \(b\)chia cho \(4\)dư \(2\), \(c\)chia cho \(4\)dư \(1\), \(d\)chia hết cho \(4\).
Khi đó \(a-c\)chia hết cho \(2\), \(b-d\)chia hết cho \(2\).
Do đó tích \(\left(a-c\right)\times\left(b-d\right)\)chia hết cho \(2\times2=4\)do đó tích tất cả các hiệu của \(4\)số đã cho chia hết cho \(4\).
tìm các cặp số ab sao cho 4a5b chia hết cho 45 (các số chia hết cho 45 đều chia hết cho 5 và 9
các bạn làm cho mình xong rồi mình tick cho
\(\overline{4a5b}\)chia hết cho \(45\)nên \(\overline{4a5b}\)chia hết cho \(5\)và \(9\).
\(\overline{4a5b}\)chia hết cho \(5\)nên \(b=0\)hoặc \(b=5\).
Với \(b=0\): \(\overline{4a50}\)chia hết cho \(9\)nên \(4+a+5+0=9+a\)chia hết cho \(9\)nên \(a=0\)hoặc \(a=9\).
Với \(b=5\): \(\overline{4a55}\)chia hết cho \(9\)nên \(4+a+5+5=14+a\)chia hết cho \(9\)nên \(a=4\).
Vậy ta có \(3\)cặp số \(\left(a,b\right)\)thỏa mãn là: \(\left(0,0\right),\left(9,0\right),\left(4,5\right)\).
b ) Chứng minh rằng ab + ba chia hết cho 11
c ) Chứng minh rằng aaabbb luôn chia hết cho 37
d ) Chứng minh ab - ba chia hết cho 9 với a > b
Ai nhanh nhất mình tick
Giải rõ ràng ra nhé
b) Ta có: ab+ba =10a+b+10b+a
=11a+11b
Vì 11a chia hết cho 11; 11b chia hết cho 11 nên 11a+11b chia hết cho 11
=> ab+ba chia hết cho 11
c) Ta có: aaabbb= aaax1000+bbb
=111ax1000+111b
=111(ax1000+b)
Vì 111 chia hết cho 37 nên 111(ax1000+b) chia hết cho 37
=> aaabbb chia hết cho 37