Cho tam giác ABC có góc A = 120 độ, đường phân giác AD, D thuộc BC. Từ D hả DE vuông góc AB, DK vuông goác AC.
a)Chứng minh: tam giác DHK là tam giác đều
b) Qua C kẻ đường thẳng song song AD cắt AB ở I. Chứng minh: tam giác ACI là tam giác đều
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé
Cho Tam Giác ABC, có BAC =120 đọ. đường phân giác trong của góc A cắt BC tại D.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC.a)Chứng MInh tam giác ADE = ADF. b)Chứng minh rằng tam giác DEF là tam giác đều C) qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng minh rằng tam giác ACM là tam giác đèu
Cho Tam Giác ABC, có BAC =120 đọ. đường phân giác trong của góc A cắt BC tại D.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC.a)Chứng MInh tam giác ADE = ADF. b)Chứng minh rằng tam giác DEF là tam giác đều C) qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng minh rằng tam giác ACM là tam giác đèu
Giúp mình với ạ
Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC. a)tam giác DEF là tam giác gì?. b) Lấy K nằm giữa E và B, lấy I nằm giữa F và C sao cho EK = FI. Chứng minh tam giác DKI cân tại D. c) Từ C kẻ đường thẳng song song với AD cắt AB tại M. Chứng minh tam giác AMC đều. d) Tính DF biết AD = 4 cm
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
Cho tam giác ABC có góc A=120độ phân giác AD kẻ DE vuông góc với AB,DE vuông góc với AC trên các đoạn thẳng BE và CF đặt EK=FI
a,CM tam giác DEF là tam giác đều
b ,CM tam giác DIK là tam giác cân
c,Từ C kẻ đường thẳng song song vs AD cắt BA ở M.CM tam giác AMC là tam giác đều
d,Tính độ dài đoạn thẳng AD theo CM=m,CF=n
a, xét hai tam giác AED và AFD có:
góc AFD = góc AED (góc vuông)
góc EAD= góc FAD (AD là tia phân giác của góc A)
AD cạnh chung
nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên
=> DE=DF
=> tam giác DEF là tam giác cân
Mà:
D là góc đối của góc A
DA là tia phân giác của A=120 độ
=> D= 60 độ Áp dụng tính chất tổng ba góc trong một tam giác ta có 180‐ 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều
b. Tam giác EAD=tam giác FAD(ch‐gn)
=>AE=AF
Mà KE=FI
=> AE+EK=AF+FI
=> AK=AI
Xét tam giác AKD và tam giác AID
AK=AI
KAD=IAK
AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
=> ΔDIK cân
=> đcpcm
c, Có:
^BAC + ^MAC = 180°
=> ^MAC = 180° - ^BAC
=> ^MAC = 180° - 120°
=> ^MAC = 60°
Lại có:
AD // MC
=> ^MCA = ^CAD = 60°
=> △ACM đều
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC có 120oBAC , đường phân giác trong của góc A cắt BC tại D. Từ
D kẻ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh △ADE = △ADF;
b) Chứng minh rằng tam giác DEF là tam giác đều;
c) Qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng
minh rằng tam giác ACM là tam giác đều.
Cho tam giác ABC. Góc BẮC =120, đường phân giác của góc A cắt BC tại D. DE vuông góc với AB cắt AC tại P, DE vuông góc với AC cắt AB tại Q. Qua C kẻ đường thẳng song song với AD cắt AB tại M
a) Chứng minh: tam giác ADE và tam giác ADF bằng nhau
b) Tam giác DAP bằng tam giác DAQ
Mọi người ơi giúp mình với mai mình phải làm để cô kiểm tra rồi. Cảm ơn nha
bn biết vẽ hình ko ? tự vẽ nhé.
a) Xét hai tam giác vuông ADE và ADF có:
DA chung
\(\widehat{EAD}=\widehat{FAD}\)(vì AD là phân giác góc \(\widehat{BAC}\))
Do đó : 2 tam giác ADE và ADF bằng nhau ( cạnh huyền-góc nhọn)
b) Ta có : \(\widehat{EAD}=\widehat{FAD}\)(chứng minh ở phần a)
\(\widehat{EAP}=\widehat{FAQ}\)(vì là 2 góc đối đỉnh)
=>\(\widehat{DAP}=\widehat{DAQ}\)
Xét 2 tam giác DAP và DAQ có:
\(\widehat{EDA}=\widehat{FDA}\)(CMT)
AD chung
\(\widehat{DAP}=\widehat{DAQ}\)
Do đó : 2 tam giác DAP và DAQ bằng nhau (g-c-g)
xong r đó. k mik nha
cho tam giác ABC cân ở B , B<90 độ kẻ AD vuông góc BC(D thuộc BC):CE vuông góc AB (E thuộc AB). gọi I lF GIAO ĐIỂM CỦA AD VÀ CE . CHỨNG MINH
a, BD=BE
b,BI phân giác GÓC ABC
c, ED song song AC
D, TỪ A KẺ ĐƯỜNG THẲNG VUÔNG GÓC VỚI AB , TỪ C KẺ ĐƯỜNG THẲNG VUÔNG GÓC VỚI BC. HAI ĐƯỜNG THẢNG NÀY CẮT NHAU TẠI K . CHỨNG MINH B,I,K THẲNG HÀNG