CM: tổng các bình phương của k số nguyên liên tiếp (k = 3,4,5) ko là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Giúp với!!
vào câu hỏi tương tự nha bn
có đó
k mk nhé
~beodatmaytroi~
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
GIÚP THÌ TICK CHO
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
1. chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó
thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
2. chứng minh rằng tổng các bình phương của k số nguyên liên tiếp ( k = 3, 4,5 ) ko là số chính phương .
3. tìm tất cả các số tự nhiên để :
n1994+ n1993+1 là số nguyên tố .
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
câu 2: gọi 3 số đó là gì thì tùy cậu nhưng ở đây gọi là n, n+1, n+2 cho thuận dấu với trường hợp k=3
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\)
rồi ta thấy ra vế phải không thể nào rút ra được bình phương của một tổng tức áp dụng theo hằng đẳng thức 1 nên tổng bình phương của k=3 số nguyên liên tiếp không thể là số chính phương
với trường hợp k=4 và 5 làm tương tự
cmr
A)tổng các bình phương của 3 số nguyên liên tiếp 0 là số chính phương
B)tổng các bình phương của 4 số nguyên liên tiếp 0 là số chính phương
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. ( hum nay Valentine hc u đầu )
1. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
P/s: Có ai chơi PUBG muốn chạy bo với tớ khônggg ^^
nma ai đó giải hộ tớ bài kia đi đã =))) Vụ chạy bo tính sau nhaaa :<<<
\(b,\) Gọi 3 số nguyên liên tiếp là : k-1 ; k ; k+1
Theo bài ra ta có :\(\left(k-1\right)^2+k^2+\left(k+1\right)^2\)
\(=k^2-2k+1+k^2+k^2+2k+1\)
\(=3k^2+2\)
Mà \(3k^2+2\) ko là SCP vì.....
=> đpcm