Bài 6 : Tính tổng.
a,1/8 + 1/24 + 1/48 +......+ 1/10200
b,3/1.2 + 3/2.3 + 3/3.4 +......+ 3/2015.2016
Bài 1:Tính:
a,3 14/19 + 13/17 + 35/43 + 6 5/19 + 8/13
b,130 25/28 + 120 17/35
c,17 2/31 - (15/17 + 6 2/31)
d,(31 6/13 + 5 9/41) - 31 6/13
e,(17 24/31 - 3 7/8) - (2 38/31 - 4)
g,1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
h,1/1.2 + 1/2.3 + 1/3.4 + .........+ 1/49.100
i,1/1.3 + 1/3.5 + 1/5.7 +........+ 1/97.99
Tính tổng :
a ,1+2+3+..........+2015
b, 3+5+7+......+2015
c,1.2+2.3+3.4+......+2015.2016
Tính tổng :
a ,1+2+3+..........+2015
SSH của tổng trên là :
(2015-1):1+1=2015(SH)
Tổng trên là:
(2015:2)x(2015+1)=2031120
b, 3+5+7+......+2015
SSH của tổng trên là :
(2015-3):2+1=1007(SH)
Tổng trên là:
(1007:2)x(2015+3)=1016063
LƯU ý: SSH=số số hạng nha
a 2029106
b508032
c1679780.53381924
tick đúng cho mk nha
a)1+2+3+...........+2015 = 2031120
b)3+5+7+...........+2015 = 1016063
c)1,2+2,3+3,4+...........2015,2016 =20294103,83
làm bài này giúp mình nhé:
bài 1:
a, x-1/3=13/6
b, -7/5-x=13/7:13/7
bài2: A=1/1.2+1/2.3+1/3.4+...+1/2015.2016
1a) x - 1/3 = 13/6
x = 13/6 + 1/3
x = 5/2
b) -7/5 - x = 13/7 : 13/7
-7/5 - x = 1
x = -7/5 - 1
x = -12/5
2) A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016
A = 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016
A = 1 - 1/2016
Tính -1/1.2+-1/2.3+-1/3.4+...+-1/2015.2016+1/2016=?
tính (1-1/1.2)+(1-1/2.3)+(1-1/3.4)+...+(1-1/2015.2016)
\(=\frac{0}{1.2}+\frac{0}{2.3}+\frac{0}{3.4}+...+\frac{0}{2015.2016}\)
\(=0+0+0+...+0=0\)
Bài 1:Tính:
a,3 14/19 + 13/17 + 35/43 + 6 5/19 + 8/13
b,130 25/28 + 120 17/35
c,17 2/31 - (15/17 + 6 2/31)
d,(31 6/13 + 5 9/41) - 31 6/13
e,(17 24/31 - 3 7/8) - (2 38/31 - 4)
g,1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
h,1/1.2 + 1/2.3 + 1/3.4 + .........+ 1/49.100
i,1/1.3 + 1/3.5 + 1/5.7 +........+ 1/97.99
Bài 2:Tìm 1 phân số có mẫu là 15 biết rằng giá trị của nó không thay đổi khi cộng tử với 2 và nhân mẫu với 2.
c; 17\(\dfrac{2}{31}\) - (\(\dfrac{15}{17}\) + 6\(\dfrac{2}{31}\))
= 17 + \(\dfrac{2}{31}\) - \(\dfrac{15}{17}\) - 6 - \(\dfrac{2}{31}\)
= (17 - 6) - \(\dfrac{15}{17}\) + (\(\dfrac{2}{31}\) - \(\dfrac{2}{31}\))
= 11 - \(\dfrac{15}{17}\)+ 0
= \(\dfrac{172}{17}\)
b; 130\(\dfrac{25}{28}\) + 120\(\dfrac{17}{35}\)
= 130 + \(\dfrac{25}{28}\) + 120 + \(\dfrac{17}{35}\)
= (130 + 120) + (\(\dfrac{25}{28}\) + \(\dfrac{17}{35}\))
= 250 + (\(\dfrac{125}{140}\) + \(\dfrac{68}{140}\))
= 250 + \(\dfrac{193}{140}\)
= 250\(\dfrac{193}{140}\)
Tính tổng: S = 3/1.2 + 3/2.3 + 3/3.4 + ... + 3/2015.2016
\(S=\dfrac{3}{1.2}+\dfrac{3}{2.3}+...+\dfrac{3}{2015.2016}\)
\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2015.2016}\right)\)
\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
\(=3\left(1-\dfrac{1}{2016}\right)\)
\(=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)
Vậy \(S=\dfrac{6045}{2016}\)
\(S=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}\right)\)
\(\Rightarrow S=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
\(\Rightarrow S=3\left(1-\dfrac{1}{2016}\right)=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)
Vậy ...
\(S=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+....+\dfrac{3}{2015.2016}\)
\(=\dfrac{1}{1}.\left(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+....+\dfrac{3}{2015.2016}\right)\)
= \(3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....\dfrac{1}{2015.2016}\right)\)
= 3. \(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)
= 3.
Tính tổng
A=1.2+2.3+3.4+...+2015.2016
B=6+6^3+6^5+...6^2015
C=1.2.3+2.3.4+...+98.99.100
D=1^2+2^2+3^2+...+2016^2
mình cần gấp lắm chiều nay mình đi học nhanh nhanh các bạn ơi
B = 6 + 6^3 + 6^5 + ... + 6^2015
=> 6^2.B = 6^2(6 + 6^3 + 6^5 + ... + 6^2015
=> 36B = 6^2.6 + 6^3.6 + 6^5.6 + ... + 6^2015 .6
=> 36B = 6^3 + 6^4 + 6^6 + ... + 6^2016
Lấy 36B trừ đi B, ta có:
35B = 6^2016 - 6
=> B = (6^2016 - 6)/35
Tinh tong S =1/1.2+1/2.3+1/3.4+...+1/2014.2015+1/2015.2016
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2015.2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
S=1/1-1//2+1/2-1/3+1/3-1/4+.......=1/2014-1/2015
S=1/1-1/2015
S=2015/2015-1/2015
S=2014/2015