chứng minh hai số a và b không chia hết cho 2 nhưng (a+b) chia hết cho 2
cho 2 số tự nhiên a và b thỏa mãn (a+b)(a+3b) chia hết cho 4 nhưng không chia hết cho 8.
Chứng minh rằng (a+b)(a+3b)(a+5b) chia hết cho 8 nhưng không chia hết cho 16
cho hai số nguyên a và b không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư chứng minh rằng (ab-1)chia hết cho 3
vì số chẵn >3 khi chia luông dư một, số lẻ thì dư hai
mà chẵn.lẻ=chẵn
a khác b nên ab-1 chia hết cho 3
Cách hai: vì một số lí do nào đó nên (ab-1) chia hết cho3
Ta có:a ko chia hết cho 3
b ko chia hết cho 3
Và ki a và b chia 3 có cùng số dư
Suy ra: Trường hợp 1:a và b có dạng 3k+1
⇒ab−1=(3k+1)(3k+1)−1⇒ab−1=(3k+1)(3k+1)−1
⇒ab−1=9k2+3k+3k+1−1⇒ab−1=9k2+3k+3k+1−1
ab−1=9k2+3k+3kab−1=9k2+3k+3k
⇒ab−1=3(3k2+k+k)⋮3⇒ab−1=3(3k2+k+k)⋮3(1)
Trường hợp 1:a và b có dạng 3k+2
⇒ab−1=(3k+2)(3k+2)−1⇒ab−1=(3k+2)(3k+2)−1
⇒ab−1=9k2+6k+6k+4−1⇒ab−1=9k2+6k+6k+4−1
ab−1=9k2+6k+6k+3ab−1=9k2+6k+6k+3
⇒ab−1=3(3k2+2k+2k+1)⋮3⇒ab−1=3(3k2+2k+2k+1)⋮3(2)
Từ (1) và (2)
Suy ra: ab-1 chia hết cho 3 (điều phải chứng minh)
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Cho hai số tự nhiên a và b (đều khác 0), biết tổng ( a + b) không chia hết cho 2; chứng minh rằng tích (a x b) luôn chia hết cho 2
Ví 1 số :2 dư 0 hoặc 1 mà (a+b) ko chia hết cho 2 => (a+b) :2 dư 1=>1 trong 2 số phải chia hết cho2
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
1, Tìm hai số tự nhiên a và b biết: a, a2 -a=21
b, a2 + b2 -a - b=2015
2, Cho hai số tự nhiên a và b, chứng minh nếu 11a + 2b chia hết cho 19 thì 18a + 5b cũng chia hết cho 19
3,a, Cho a và b cùng chia hết cho 3. Chứng minh a2 + ab + b2 chia hết cho 9.
b, Cho (a-b)2 + 3ab chia hết cho 9. Chứng minh a chia hết cho 3 hoặc b chia hết cho 3.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Viết hai số, mỗi số có ba chữ số và:
a) Chia hết cho 2: ………….
Chia hết cho 5: ………….
Chia hết cho 3: ………….
Chia hết cho 9: ………….
b) Vừa chia hết cho 2 vừa chia hết cho 5: ………….
c) Chia hết cho 5 nhưng không chia hết cho 2: ………….
a) Chia hết cho 2: 500; 580
Chia hết cho 5: 540; 550
Chia hết cho 3: 300; 360
Chia hết cho 9: 540; 450
b) Vừa chia hết cho 2 vừa chia hết cho 5: 500; 600
c) Chia hết cho 5 nhưng không chia hết cho 2: 405; 505
chứng minh rằng:
a) với n là một số tự nhiên bất kì thì 75n+30 chia hết cho 15 nhưng không chia hết cho 25.
b) không tìm được 2 số tự nhiên x và y sao cho: a)2x+6y=2021 b)24x+16y=2022