cho tam giác ABC vuông cân tại A, kẻ trung tuyến AM , lấy điểm D bất kì trên BC , kẻ BH và CK vuông góc với AD .Chứng minh :tam giác MHK VUÔNG CÂN
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Cho tam giác ABC vuông cân tại A có I là đường trung tuyến. Lấy điểm D thuộc cạnh BC (C khác M). Kẻ BH, CK vuông góc với AD. Chứng minh:
a) AH=CK
b) Tam giác MHK vuông cân
a. Ta có: góc ABH = góc KAC (cùng phụ góc BAH)
Xét tam giác BAH và tam giác ACK có:
AB=AC
góc ABH = góc CAK
góc BHA = góc AKC (=90độ)
=> tam giác BAH = tam giác ACK (cạnh huyền - góc nhọn)
=> AH=CK
Cho tam giác ABC vuông cân tại A, trung tuyến AM. Lấy điểm E thuộc BC. Kẻ BH,CK vuông góc với AE.CMR:Tam giác MHK vuông cân
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường thẳng BD). Chứng minh : a) BH = CK. b) Tam giác MHK vuông cân.
xin lỗi tôi ko biết
ai mik lại
ai duyệt mình duyệt lại
ai đúng mình dừng lại
chon a,b,c
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. Trên cạnh BC lấy điểm E, kẻ BH vuông góc với AE, CK vuông góc với AE. Chứng minh: Tam giác MHK vuông cân
Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. Trên cạnh BC lấy điểm E, kẻ BH vuông góc với AE, CK vuông góc với AE. Chứng minh: Tam giác MHK vuông cân
Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
cho tam giác ABC vuông cân tại A, có trung tuyến BM. Gọi D là điểm bất kì thuộc cạnh AC. kẻ AH, CK vuông góc với BD( H,K thuộc BD). Chứng minh:
a) BH=CK
b)tam giác MHK vuông cân
Hình hơi lệch mọi người thông cảm
Cho tam giác ABC vuông cân tại A. Trung tuyến AM , lấy E thuộc cạnh BC . Kẻ BH vuông góc với AE , CK vuông góc với AE (H , K thuộc AE)
Chứng minh tam giác MHK vuông cân
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà
=>
Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà
=>
=> Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ;=>
=> Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
u bai nay lop 7 ma
Bạn tham khảo bài giải của mình ở link sau nhé,chỉ cần gạch bỏ BH = AK là xong : olm.vn/hoi-dap/question/779590.html