Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thu Trang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:07

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

Akai Haruma
31 tháng 12 2023 lúc 14:09

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

Akai Haruma
31 tháng 12 2023 lúc 14:09

3/
$C=1+2+2^2+2^3+...+2^{99}$

$2C=2+2^2+2^3+2^4+...+2^{100}$

$\Rightarrow 2C-C=2^{100}-1$

$\Rightarrow C=2^{100}-1$

Nguyễn Lê Hoàng
Xem chi tiết
Trần Thanh Phương
22 tháng 8 2018 lúc 16:13

a)

10^33 có dạng 10...0

=> 10^33 + 8 có dạng 10...08 chia hết cho 2

=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9

b) c) d) tương tự

Y-S Love SSBĐ
22 tháng 8 2018 lúc 16:27

a) 10 mủ mấy cũng chỉ có số 0 và 1

\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )

         ( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )

b) 10 mủ mấy cũng chỉ có số 0 và 1

\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )

         ( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )

d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9

Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0

    cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3

Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9

\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9

Câu b mk hông biết bạn tự làm nha

Hk tốt

Kazuha
Xem chi tiết
Kazuha
Xem chi tiết
Lê An Nguyễn
Xem chi tiết
Pun Lùn
Xem chi tiết
Pham Huyen
Xem chi tiết
ngonhuminh
1 tháng 1 2017 lúc 14:14

A)...32a+7b=29a+3a+7b

​29a tất nhiên chia hết cho 29: 3a+7b chia hết ho 29=>đpcm

​b)3a+7b+29b lập luân (a)=>đpcm

​c)2(3a+7b)+29a+29 a=>đpvm

​d)

Linh Nguyễn Phương Khánh
Xem chi tiết
Đàm Minh Quang
Xem chi tiết
Cô Hoàng Huyền
11 tháng 9 2017 lúc 9:54

a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)

Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)

Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)

b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)

Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)

\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)

\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)

c) Ta thấy:

\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)

Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)

\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Công Chúa Họ NGuyễn
Xem chi tiết