Cho ( 7x + 9y ) chia hết cho 17
Chứng minh ( 8x + 3y) chia hết cho 17
Cho 2x+3y chia hết cho 17. Chứng minh 9x+5y chia hết cho 17
Ta có:4(2x+3y)+(9x+5y)
=8x+12y+9x+5y
=17x+17y chia hết cho 17
Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17
Ta có:4(2x+3y)+(9x+5y)
=8x+12y+9x+5y
=17x+17y chia hết cho 17
Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17
\(2x+3y⋮17\Rightarrow34x+17y⋮17\)
\(\Rightarrow2x+3y+34x+17y=36x+20y=4\left(9x+5y\right)⋮17\)
\(\Rightarrow9x+5y⋮17\)
Cho 6x+3y chia hết cho 31 . Chứng minh rằng x+7y chia hết cho 31
Đặt A = 6x + 3y ; B = x + 7y
Xét hiệu 6B - A = 6 . ( x + 7 y ) - ( 6x + 3y )
= 6x + 42y - 6x - 3y
= 39y
Chị thấy đến đây chị ko làm đc nữa. Em có chép nhầm đề bài ko vậy .
Chi co the lam lại được không em chưa hiểu?
Chứng minh rằng:Nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Vì 7x+4y \(⋮\)37
\(\Rightarrow\)13.(7x+4y) \(⋮37\)
Ta xét biểu thức sau:
7.(13x+18y) - 13.(7x+4y)
=91x+126y - 91x - 52y
= 74y \(⋮37\)
Vì 74y\(⋮37\)
và\(13.\left(7x+4y\right)⋮37\)
=>7.(13x+18y)\(⋮37\)
Mà (7,37)=1
=>13x+18y\(⋮37\)
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y cũng chia hết cho 37
cho 3a + 2b chia hết cho 17. Chứng minh rằng 10a+b chia hết cho 17
taco;17achia het cho17
suy ra 17a+3a+b chia het cho17
suy ra20a+2bchia het cho17
rút gọn cho 2
suyra 10a+b chia hết cho 17
ta có:3a+2b chia hết cho 17
=> a và b chia hết cho 17
<=>17a+3a+b cũng chia hết cho 17
=>20a+2b (+ 2 vế) chia hết cho 17)
<=>20:2(a+b) chia hết cho 17
=>10a+b chia hết cho 17
cho a-5b chia hết cho 17.Chứng minh 10a+b chia hết cho 17
Cho (7x + 9y) : 17
chung minh ( 8x + 3y ) : 17
Ta có: 7x+9y chia hết cho 17
Nên 17x +7x+9y chia hết cho 17
Do đó: 24x+9y chia hết cho 17
3(8x+3y) chia hết cho 17
Mà (3,17)=1 nên 8x+3y chia hết cho 17
M.n làm ơn giúp mink nha, cảm ơn!!!!
Chứng minh rằng với mọi số nguyên x,y thì:
a) \(x\left(x^2-2x\right)+\left(x-2x\right)\) chia hết cho x - 2
b) \(x^3y^2-3yx^2+xy\) chia hết cho xy
c) \(x^3y^2-3x^2y^3+xy^2\) chia hết cho \(x^2-3xy+1\)
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
CMR;
a, nếu 20a+11b chia hết cho 17 thì 83a+38b chia hết cho 17 với a,b là các số nguyên b,nếu 2a+3b+4c chia hết cho 7 thì 13a+23b+33c chia hết cho 7 với a,b,c là các số nguyên c,nếu A=5x+y chia hết cho 9 thì B= 4x-3y chia hết cho 9 d, nếu C=4x+3y chia hết cho 13 thì D= 7x+2y chia hết cho 13