tìm x, y
\(\hept{\begin{cases}\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\\x^{10}y^{10}=1024\end{cases}}\)
a) Gọi 3 số cần tìm lần lượt là x;y;z. Ta có:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{310}{10}=31\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=31\\\frac{y}{3}=31\\\frac{z}{5}=31\end{cases}}\)
\(\hept{\begin{cases}x=62\\y=93\\z=155\end{cases}}\)
Tìm 2 số x; y biết rằng:
a)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{-5}\\-3x+2y=55\end{cases}}\).
b)\(\hept{\begin{cases}\frac{x}{y}=\frac{-7}{4}\\4x-5y=72\end{cases}}\).
c)\(\hept{\begin{cases}\frac{x}{-3}=\frac{y}{8}\\x^2-y^2=\frac{-44}{5}\end{cases}}\).
d)\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-3}\\3x^3+y^3=\frac{64}{9}\end{cases}}\).
a)\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)
b)\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
c)\(\hept{\begin{cases}x^2\\x^3-y^3=35\end{cases}+xy+y^2=7}\)
d)\(\hept{\begin{cases}\left(x+y\right)^2\\x-y-3=0\end{cases}-5\left(x+y\right)+4=0}\)
e)\(\hept{\begin{cases}x^2+\frac{4}{y^2}=4\\x-\frac{2}{y}-\frac{4x}{y}=-2\end{cases}}\)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Giải hệ pt:
1. \(\hept{\begin{cases}xy+y^2+x=7y\\\frac{x^2}{y}+x=12\end{cases}}\)
2.\(\hept{\begin{cases}\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1\\x^2+y^2-\frac{2x}{y}=4\end{cases}}\)
3.\(\hept{\begin{cases}x^6+y^8+z^{10}\le1\\x^{2007}+y^{2009}+z^{2011}\ge1\end{cases}}\)
giải hệ phương trình sau
a, \(\hept{\begin{cases}\frac{x}{3}+\frac{y}{4}-2=0\\5x-y=11\end{cases}}\)b, \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y-10=0\end{cases}}\)
b) Gọi 3 số cần tìm lần lượt là: x,y,z. Vì x,y,z tỉ lệ nghịch với 2;3;5 nên
\(2x=3y=5z\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{310}{\frac{31}{30}}=300\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=300\\\frac{y}{\frac{1}{3}}=300\\\frac{z}{\frac{1}{5}}=300\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}.300\\y=\frac{1}{3}.300\\z=\frac{1}{5}.300\end{cases}}\)
\(\hept{\begin{cases}x=150\\y=100\\z=60\end{cases}}\)
a) \(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2-2x\right)^2+4\left(x^2-2x\right)\\\frac{1}{x}+\frac{1}{y-1}=\frac{3}{2}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\\\frac{3}{x}-\frac{4}{y}=-1\end{cases}}\)
a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)
Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)
\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)
b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)
\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)
, x=2 , x2-2x+4=0 (3)
pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)
Vậy nghiệm của hpt là: (x;y)=(2;2)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)