\(\frac{x}{3}=\frac{y}{4}\)và x.y =20
Tính x,y
tìm x,y,x biết
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x.y+y.z+z.x=64
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
\(a,\frac{x}{2}=\frac{y}{3}\)và x.y = 54
\(b,\frac{x}{5}=\frac{y}{3}\)và \(x^2-y^2=4\)(x, y >0)
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Tìm các số hữu tỉ x,y,z
x (x+y+z) = -12 ; y (y+x+z) = 18 ; z (z+y+x) = 30
\(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\)và 3x + y - 2z = 42
x.y = z; y.z = 4x ; z.x = 9y
x.y = \(\frac{3}{5};y.z=\frac{4}{5};z.x=\frac{3}{4}\)
tìm x,y
\(\frac{x}{3}=\frac{y}{4}\)và x.y = 48
help?
Đặt \(\frac{x}{3}=\frac{y}{4}=t\Rightarrow x=3t,y=4t\)
Ta có: \(xy=48\)
\(\Rightarrow\left(3t\right).\left(4t\right)=48\)
\(\Rightarrow12t^2=48\)
\(\Rightarrow t^2=4\Rightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Ta có bảng sau:
t | 2 | -2 |
x = 3t | 6 | -6 |
y = 4t | 8 | -8 |
Chúc bạn học tốt.
Ta có x/3 = y/4 và ta lại có x . y = 48
Do đó x . y / 3 . 4 = 48/12 = 4
Nên x = 3 . 4 = 12
y = 4 . 4 = 16
hok tốt nhé
kb lun
Giải : theo tính chất của dãy tỉ số bằng nhau ta có
x/3 = y/4 = x.y / 3.4 = 48 / 12 = 4
Do đó : x/3 = 4 suy ra : x = 3. 4 = 12
y/4 = 4 suy ra : y = 4 . 4 = 16
Vậy x= 12 ; y = 16
tìm x , y , z biết
a) \(\frac{x}{2}=\frac{y}{5}\)và 3x - y = 10
b) \(\frac{x}{4}=\frac{y}{5}\)và x.y= 30
c) \(\frac{x}{4}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\)và 4x + y.z= 16
d) \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)và 3x - 2y + z = 105
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a) Ta có: \(\frac{x}{2}\) = \(\frac{y}{5}\) và 3x-y = 10
=> \(\frac{3x}{6}\) = \(\frac{y}{5}\) và 3x-y = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}\) = \(\frac{y}{5}\) = \(\frac{3x-y}{6-5}\) = \(\frac{11}{1}\) = 11
=> x= \(\frac{11.6}{3}\) = 22
=> y= 11.5= 55
Vậy x= 22
y= 55
giúp mình với, trình bày đầy đủ nhé các bạn, nhanh nhất mình tik cho :D
Tính giá trị của biểu thức sau:
\(B=\frac{5b+12}{5a-43}+\frac{23-2.a}{1-2b}vớia-b=11\&a\ne\frac{43}{5},b\ne\frac{1}{2}\)
\(C=\frac{0,75.x^2-y^2}{3.x^2+9.y^2}+\frac{6.x+y}{8.x-2.y}với\frac{x}{y}=-2\)
\(D=4.x^2-5.x.y+3.y^2với|x|=1,|y|=2\)
\(E=x^4-x^3.y+3.x^3+x^2.y^2-x.y^3-3.x.y^2-x.\left(x-y\right)-3.x+7vi-y+3=0\)
\(F=x^3+2.x^2.y-2.x^2+x.y^2-2.x.y+2.x+2.y-2vớix+y-2=0\)
Thanks ^^
\(\frac{x}{3}=\frac{y}{4}\)và x.y=48
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=k\)
=> Ta có: x = 3k ; y = 4k
=> 3k . 4k = 48
=> xy = 12.k2 = 48
=> k2 = 48 : 12 = 4
=> k = 2
=> x = 2x3 = 6
=> y = 2x4 = 8
Vậy x = 6 và y = 8
CHÚC BẠN HỌC TỐT
=>\(\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x}{3}.\frac{y}{4}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{xy}{12}=\frac{48}{12}=4\)
=>\(\left(\frac{x}{3}\right)^2=\left(\frac{y}{4}\right)^2=2^2=\left(-2\right)^2\)
TH1:\(\frac{x}{3}=\frac{y}{4}=2\)
=>x=2.3=6 và y=2.4=8
TH2:\(\frac{x}{3}=\frac{y}{4}=-2\)
=>x=-2.3=-6 và y=-2.4=-8
Vậy (x;y) E {(6;8);(-6;-8)}
Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\frac{x}{3}.\frac{y}{4}=\frac{xy}{3.4}=\frac{48}{12}=4=k^2\Rightarrow k\in\left\{2;-2\right\}\)
Khi \(k=2\)thì:\(\frac{x}{3}=2\Rightarrow x=6;\frac{y}{4}=2\Rightarrow y=8\)
Khi\(k=-2\)thì:\(\frac{x}{3}=-2\Rightarrow x=-6;\frac{y}{4}=-2\Rightarrow y=-8\)
\(\frac{x}{3}=\frac{y}{4}\)và x.y=192
\(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k\) ; \(y=4k\)
Ta có : \(x.y=192\Rightarrow3k.4k=192\)
\(12k^2=192\Rightarrow k^2=16\Rightarrow\orbr{\begin{cases}k=4\\k=-4\end{cases}}\)
Với \(k=4\Rightarrow x=4.3=12\); \(y=4.4=16\)
Với \(k=-4\Rightarrow x=-4.3=-12\); \(y=-4.4=-16\)
Vậy x = 12 hoặc -12 ; y = 16 hoặc -16
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3}.\frac{y}{4}=\frac{y}{4}.\frac{y}{4}=>\frac{xy}{12}=\frac{y^2}{16}=\frac{192}{12}=16\)
\(=>y^2=16.16=256\)
\(=>y=-16;16\)
\(=>\orbr{\begin{cases}y=-16=>x=192:\left(-16\right)=-12\\y=16=>x=192:16=12\end{cases}}\)
Vậy x=12;y=16
x=-12;y=-16