\(x+y=x:y=3.\left(x-y\right)\)
\(\text{1. Tìm x,y,z, biết:}\)
\(x+y=x:y=3\left(x-y\right)\)
Lời giải:
$x+y=\frac{x}{y}$
$y(x+y)=x$
$x(y-1)+y^2=0$
$x(y-1)=-y^2$
Nếu $y=1$ thì $x+1=x$ (vô lý). Do đó $y\neq 1$
$\Rightarrow x=\frac{y^2}{1-y}$.
Khi đó:
$x+y=3(x-y)$
$\Leftrightarrow \frac{y^2}{1-y}+y=\frac{3y^2}{1-y}-3y$
$\Leftrightarrow \frac{y^2}{1-y}=2y$
$\Leftrightarrow y(\frac{y}{1-y}-2)=0$. Rõ ràng $y\neq 0$ nên $\frac{y}{1-y}-2=0$
$\Leftrightarrow y=2(1-y)\Leftrightarrow y=\frac{2}{3}$
$x=\frac{y^2}{1-y}=\frac{4}{3}$
\(x+y=x:y=3\left(x-y\right)\)
x+y=3(x-y)\(\Rightarrow\)x+y=3x-3y\(\Rightarrow\)y+3y=3x-x\(\Rightarrow\)4y=2x\(\Rightarrow\)2y=x
\(\Rightarrow\)x : y=2\(\Rightarrow\)x+y=2\(\Rightarrow\)2y+y=2\(\Rightarrow\)3y=2
\(\Rightarrow\)y=\(\frac{2}{3}\); x=\(\frac{1}{3}\)
\(\left(x:y\right)^{-2}\left[\left(\frac{1}{2}y\right):x\right]^3\)
Bài 1: Tìm x,y,z biết:
a) \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
b) \(x+y=x:y=5\left(x-y\right)\)
a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)
Mà \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)
Tìm x,y biết:\(x-y=2\left(x+y\right)=x:y\)
tìm số hữu tỉ x,y,z biết:
a. \(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)và \(x+2=y+1=z+3\)
b. \(x+y=xy=x:y\)( y khác 0 )
c. \(x-y=xy=x:y\) ( y khác 0 )
d. \(x\left(x+y+z\right)=-5\) ; \(y\left(x+y+z\right)=9\) ; \(z\left(x+y+z\right)=5\)
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
Tìm x; y
\(x-y=x:y=2\left(x+y\right)\)
Cho P= \(\frac{x^2}{\left(x+y\right)\left(x-y\right)}\)- \(\frac{y^2}{\left(x+y\right)\left(1+x\right)}\)-\(\frac{x^2\cdot y^2}{\left(x+1\right)\left(1-y\right)}\)
a, Rút gọn b, Tìm (x:y) thuộc z để P=3
Tìm x; y
\(x-y=x:y=2\left(x+y\right)\)