Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quang Minh
Xem chi tiết
๖²⁴ʱČʉէε✦ɠїɾℓ༉
11 tháng 8 2019 lúc 23:31

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2004.2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2.3}+\frac{2}{2.3}-\frac{2}{3.4}+...+\frac{2}{2004.2005}-\frac{2}{2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2005.2006}\)

\(=1-\frac{1}{2011015}\)

\(=\frac{2011015}{2011015}-\frac{1}{2011015}\)

\(=\frac{2011014}{2011015}\)

Cbht

Gia Linh
Xem chi tiết
Yen Nhi
2 tháng 2 2023 lúc 22:56

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+2.\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+2.\left(\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2005.2006}\right)\)

\(=1-\dfrac{2}{2005.2006}\)

\(=\dfrac{2011014}{2011015}\).

Ta có:

\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(M=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2004.2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2005.2006}\right)\)

 

Nguyễn Quý Trang
Xem chi tiết
Nguyễn Quý Trang
7 tháng 3 2017 lúc 22:04

Giúp mình

Hoàng Thị Ngọc Anh
7 tháng 3 2017 lúc 22:10

Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\)

\(=\frac{1}{1.2}-\frac{1}{2005.2006}\)

\(=\frac{1}{2}-\frac{1}{4022030}\)

\(=-40220295.\)

Kim Tae Hee
7 tháng 3 2017 lúc 22:14

\(=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}=\frac{2005}{2006}\)

Edogawa Conan
Xem chi tiết
Trần Việt Hà
6 tháng 7 2016 lúc 19:38

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Trần Quỳnh Mai
6 tháng 7 2016 lúc 19:39

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{1}{19800}\)

Trần Quỳnh Mai
6 tháng 7 2016 lúc 19:40

Nhầm , kết quả bằng :

\(=\frac{4949}{19800}\)

Vân Anh
Xem chi tiết
Vương Hải Nam
11 tháng 4 2019 lúc 20:59

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Nguyễn Ngọc Thảo Phương
Xem chi tiết
 .
6 tháng 9 2019 lúc 17:53

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(=\frac{1}{2}-\frac{1}{50.51}\)

\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)

Dang Trung
6 tháng 9 2019 lúc 18:09

Gọi A là tổng dãy phân số trên

Ta có :

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)

Ta thấy:

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{​​}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)

\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)

\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)

Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)

Chúc bạn học tốt !!! :D

Phạm Hải Yến
Xem chi tiết
Huỳnh Quang Sang
15 tháng 5 2019 lúc 9:30

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

 Bạch Dương
15 tháng 5 2019 lúc 11:15

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)

Cá Chép Nhỏ
15 tháng 5 2019 lúc 15:00

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}\)

Thấy : \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng : 

+ Với n = 1 có : \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

+ Với n = 2 có : \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

....

+ Với n = 2019 có : \(\frac{2}{2018.2019.2020}=\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

Cộng từng vế có :

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

\(2A=\frac{1}{2}-\frac{1}{2019.2020}\)

   \(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right):2\)

   \(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right).\frac{1}{2}\)

   \(A=\frac{1}{4}-\frac{1}{2019.2020.2}\)

   Đến đây tắc dồi >: 

   

Phạm Thu Huyền
Xem chi tiết
IQ 200000000000000000000...
14 tháng 4 2019 lúc 21:00

A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)

=1/2*(1/2-1/99*100)

=1/2*(4950-1/9900)

=4950/19800

Huỳnh Quang Sang
14 tháng 4 2019 lúc 21:01

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

hồng miêu
14 tháng 4 2019 lúc 21:05

A=1/2.(2/1.2.3+2/2.3.4+...+2/98.99.100

=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100

Nguyễn Chí Nhân
Xem chi tiết
Kudo Shinichi
22 tháng 3 2017 lúc 19:20

Ta có công thức:

\(\frac{a}{c.\left[c+1\right].\left[c+2\right]}=\frac{a}{2}\left[\frac{1}{c.\left[c+1\right]}-\frac{1}{\left[c+1\right].\left[c+2\right]}\right]\)

vậy

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{11.12}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}.\frac{77}{156}=\frac{77}{312}\)

mình làm đầu tiên đó, 

Chúc bạn học tốt !

ST
22 tháng 3 2017 lúc 19:17

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{11.12.13}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{11.12}-\frac{1}{12.13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{156}\right)\)

\(=\frac{1}{2}\cdot\frac{77}{156}\)

\(=\frac{77}{312}\)