tìm n là sô nguyên để các phân số sau rút gọn được
B= \(\frac{3-8n}{3n+1}\)
TÌM ĐIỀU KIỆN ĐỂ SỐ NGUYÊN N+7/N-3 ĐỂ ;
a, RÚT GỌN ĐƯỢC
b, LÀ PHÂN SỐ TỐI GIẢN
1)tìm các số nguyên n để phân số sau rút gọn được
12 phần 7n+1
2) tìm điều kiện của số nguyên n để phân số sau là phân số tối giản
17 phần 3n-1
Mình làm phần 1. Phần 2 bạn dựa vào đó mà làm.
Để \(\frac{12}{7n+1}\) rút gọn được thì 7n + 1 phải chia hết cho 1 ước số lớn hơn 1 của 12
Ư(12) = { 2 ; 3 ; 4 ; 6 ; 12 }
Để 7n + 1 chia hết cho 2 thì n lẻ;
Để 7n+ 1chia hết cho 4 thì 7n chia 4 dư 3; mà 7 chia 4 dư 3 nên n chia 4 dư 1
Để 7n+1 chia hết cho 3 thì 7n chia 3 dư 2; mà 7 chia 3 dư 1 nên n chia 3 dư 2
Để 7n+1 chia hết cho 6 thì 7n chia 6 dư 5; mà 7 chia 6 dư 1 nên n chia 6 dư 5
Để 7n+1 chia hết cho 12; thì n phải chia hết cho 4 và 3; tức n chia 4 dư 1; chia 3 dư 2; hay chia 12 dư 5 .
Vậy ...
Tìm số nguyên n để phân số sau rút gọn được: \(\frac{8n+193}{4n+3}\)
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản
tìm sô tự nhiên n để phân số \(\frac{2n+1}{n+2}\) rút gọn được
CMR :p và p2+2 là các số nguyên tố thì p3+2 là số nguyên tố
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố
Tìm các số nguyên n trong khoảng từ 300 đến 800 để phân số sau rút gọn được và tính tổng các số nguyên đó : \(A=\frac{3n-7}{2n+3}\)
a)Tìm tất cả các số dương n để các phân số sau là tối giản:\(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
b)Tìm tất cả các số nguyên n để\(\frac{7n+8}{8n+7}\)có thể rút gọn được
c)Chứng minh rằng nếu\(\frac{5n^2+1}{6}\)nhận giá trị nguyên thì\(\frac{n}{2};\frac{n}{3}\)là các phân số tối giản
tìm số nguyên n để phân số 4n-3/1-3n rút gọn được
Bài 1: Tìm n \(\in\) Z để \(\frac{6n-1}{3n+2}\) có giá trị nguyên.
Bài 2: Tìm điều kiện của n\(\in\) N để \(\frac{5n+6}{8n+7}\) có thể rút gọn được
Bài 3: Tìm số nguyên n để phân số sau có giá trị là một số nguyên :
V = \(\frac{n^2+4n-2}{n+3}\)
Bạn nào làm cũng đc nhé, mình tick hết cho. Nhớ có lời giải nhé
Bài 1:
\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)
Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)
Bài 3:
\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)
\(\Rightarrow n-2⋮n+3\)
\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)