Bài 3
Cho B =\(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh B=\(\frac{3}{5}\)
Cho B=\(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh B với \(\frac{3}{5}\)
Cho P= \(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh P với \(\frac{3}{5}\)
P = 1/3 + 1/16 + 1/19 + 1/21 + 1/61 + 1/72 + 1/83 + 1/94
P = 0, 5490527821
3/5 = 0, 6
Mà 0, 5490527821 < 0, 6
Nên: P < 3/5
Bài 1 : cho 2 biểu thức
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
So sánh A với \(\frac{1}{21}\)
So sánh B với \(\frac{11}{21}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
a)\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
b)\(\frac{3}{7}.19.\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
c)\(15\frac{1}{4}:(\frac{-5}{7})-25\frac{1}{4}:(\frac{-5}{7})\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=1\frac{4}{23}-\frac{4}{23}+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5=2,5\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)=-6\)
c) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(\frac{27}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2+0,5\)
\(=2,5.\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(\frac{58}{3}-\frac{100}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)\)
\(=-6.\)
c) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(\frac{61}{4}-\frac{101}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14.\)
Chúc bạn học tốt!
Thực hiện so sánh:\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}\)\(+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}\)\(+\frac{1}{23}\)với \(\frac{5}{6}\)
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
Chứng minh:
c.\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b.\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
a.\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\)
1) Tính bằng cách hợp lí nếu có thể:
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
c) \(9.\left(-\frac{1}{3}\right)^3+\frac{1}{3}\)
d) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
a)\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2,5\)
b)\(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)\)
\(=-6\)
c)\(9.\left(-\frac{1}{3}\right)^3+\frac{1}{3}\)
\(=9.\left(-\frac{1}{3}\right)^3+9.\frac{1}{27}\)
\(=9.\left[\left(-\frac{1}{3}\right)^3+\frac{1}{27}\right]\)
\(=9.0=0\)
d)\(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14\)
Bài 1: So sánh các ps sau:
a)\(\frac{1}{2};\frac{1}{3};\frac{2}{3}\)
b)\(\frac{4}{9};-\frac{1}{2};\frac{3}{7}\)
c)\(\frac{3}{124};\frac{1}{41};\frac{5}{207};\frac{2}{83}\)
d)\(\frac{134}{43};\frac{55}{21};\frac{74}{19};\frac{116}{37}\)
e)\(\frac{16}{9};\frac{24}{13}\)
g)\(\frac{-2525}{2929};\frac{-217}{245}\)
h)\(\frac{27}{82};\frac{26}{75}\)
i)\(\frac{-49}{75};\frac{64}{-95}\)