Cho tam giác ABC cân tại A,biết A = 70 độ . Phân giác B và C cắt nhau tại O
a) Tính BOC
b) AO cắt BC tại K cho BO=5cm,BC=8cm . Tính khoảng cách từ O đến AC
giải giúp mình với ạ :3
1.Cho tam giác ABC,A^= 60 độ.Phân giác BD,CE cắt nhau tại O.CMR:
a)Tam giác DOE cân
b)BE+CD=BC
c)Cho biết OB=5cm,khoảng cách từ O đến đường thẳng BC là 3cm và AB=AC.Tính BC
2.Cho tam giác ABC có A^=50 độ.Tia phân giác C^ cắt cạnh AB tại M.Tính AMC^ và BMC^
3.Tam giác ABC có A^=100 độ và B^-C^=50 độ.Tính C^
Ai thấy bài mk giúp mk nha mk cần rất gấp!
a) Vẽ OK là tia phân giác của góc BOC
Ta có : ∠ BOC = 180o - ( ∠ OBC + ∠OCB )
Mà ∠OBC = 1212. ∠ABC
∠OCB = 1212.∠ACB
=> ∠BOC = 180o-1/2x(∠ABC + ∠ ACB )
Mặt khác , ∠ABC + ∠ACB = 180o - ∠A = 180 o - 60o = 120o
=> ∠BOC = 180o- 1212. 120o = 120o
Ta có : ∠EOB + ∠BOC = 180o ( 2 góc kề bù )
=>∠EOB = 180o - 120o = 60o (1)
∠DOC + ∠BOC = 180o (2 góc kề bù )
=> ∠DOC = 180o - 120o = 60o (2)
Từ (1) và (2) => ∠EOB = ∠DOC (= 60o) ( 3)
Vì OK là tia phân giác của góc BOC nên ∠BOK = ∠COK = 1/2x 120o = 60o (4)
Từ (3) và (4) => ∠BOK = ∠ COK = ∠EOB =∠DOC
Xét ΔEOB và Δ KOB có :
OB : cạnh chung
∠EBO = ∠OBK ( gt)
∠EOB = ∠BOK (cmt)
=> ΔEOB = Δ KOB(g - c - g)
=> OE = OK ( 2 cạnh tương ứng) (5)
Xét ΔDOC và ΔKOC có :
OC : cạnh chung
∠KCO = ∠OCD ( gt)
∠KOC = ∠COD ( cmt)
=> ΔDOC = ΔKOC ( g - c - g)
=> OK = OD( 2 cạnh t/ứng) (6)
Từ (5) và (6) => OD = OE ( = OK)
Xét ΔDOE có OD = OE nên ΔDOE cân tại O
b)Vì ΔEOB = Δ KOB (cm câu a)
=> BE = BK ( 2 cạnh t/ứng)
Vì ΔDOC = ΔKOC ( cm câu a)
=> CD = CK ( 2 cạnh t/ứng )
Ta có : BE = BK (cmt)
CD = CK (cmt)
=> BE + CD = BK + CK = BC ( đpcm)
cai so 1212 do bi loi nen ban phai doi thanh \(\frac{1}{2}\)cho mk nha
dau cham la dau nhan
c)Đặt AO cắt BC tại H
Do tam giác ABC cân tại ^A
=>AO là đường phân giác => AO là đường cao
=> A,O,H thẳng hàng(OH là k/c từ O đến BC) và H là trung điểm của BC(Vì AH là đường trung tuyến)
Trong tam giác BOH vuông tại H theo định lý pytago,ta có:
\(OB^2=OH^2+BH^2\)
\(\Leftrightarrow5^2=3^2+HB^2\)
\(\Rightarrow HB^2=16=4^2\)
\(\Rightarrow HB=4\left(cm\right)\)
Mà H là trung điểm của BC
\(\Rightarrow BC=8cm\)
Vậy BC=8cm
Bài 1: Cho tam giác ABC, hai đường phân giác BD và CE của tam giác cắt nhau tại O. Tia AO cắt BC tại M. Tam giác ABC phải có điều kiện gì để AM vuông góc với BC.
Bài 2: Cho tam giác ABC có góc A= 50°. Đường phân giác của góc B và đường phân giác ngoài tại đỉnh C của tam giác cắt nhau tại O. Tính số đo góc BAO.
Bài 3: Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau tại O. Từ A vẽ một đường thẳng vuông góc với OA, cắt các tia BO và CO lần lượt tại M và N. CMR: BM vuông góc với BN, CM vuông góc với CN.
Mọi người giúp mình nhanh nha😙😙😙😙
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Help
Cho hình chữ nhật ABCD có AB=5cm , AD= 3cm , hai đường chéo AC và BD cắt nhau tại O, gọi H là hình chiếu của a trên BD, tia AH cắt DC tại E
a, tính AH , AE
b , tính diện tích tam giác OEC
Câu 2 :
Cho tam giác ABC vuông tại A , AB = 5cm , AC =7 cm , tia phân giác của góc B cắt AC tại E , tia phân giác của góc C cắt AB tại F , Gọi O là là giao điểm của BE và CF.
a , tính BE , CF
b , Tính khoảng cách từ O đến các cạnh của tam giác ABC
c , tính khoảng cách từ O đến các đỉnh của tam giác ABC
Cho tam giác ABC. Kẻ BE vuông góc với AC, CF vuông góc với AB. Biết BE = CF = 8cm, độ dài BF và BC tỉ lệ 3 và 5
a, Chứng minh tam giác ABC cân
b, Tính cạnh BC
c, BE và CF cắt nhau tại O. Nối AO và EF. Chứng minh đường thẳng AO là trung trực của EF
GT | △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm BF và BC tỉ lệ 3 và 5 BE ∩ CF = {O} . Nối AO với EF |
KL | a, △ABC cân b, BC = ? c, AO là trung trực EF |
Bài làm:
a, Xét △BFC vuông tại F và △CEB vuông tại E
Có: BC là cạnh chung
CF = BE (gt)
=> △BFC = △CEB (ch-cgv)
=> FBC = ECB (2 góc tương ứng)
Xét △ABC có: ABC = ACB (cmt)
=> △ABC cân tại A
b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)
Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)
Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)
\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)
\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)
\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)
c, Vì △ABC cân tại A => AB = AC
Ta có: AB = AF + FB
BC = AE + EC
Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)
=> AF = AE
=> A thuộc đường trung trực của FE (1)
Ta có: DBC = FBE + EBC
ECB = ECF + FCB
Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)
=> FBE = ECF
Xét △BFO vuông tại F và △CEO vuông tại E
Có: FBO = ECO (cmt)
BF = CE (△BFC = △CEB)
=> △BFO = △CEO (cgv-gnk)
=> FO = OE (2 cạnh tương ứng)
=> O thuộc đường trung trực của FE (2)
Từ (1) và (2) => đường thẳng AO là trung trực của EF.
Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O
a) Chứng minh: O là trọng tâm tam giác ABC
b) tính độ dài OD biết AB =5cm, BC =8cm
c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của Tam giác ABC?
giúp liền là được tiền nèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè
k cái đm l thằng lone trẩu
thương tôi
hãy k tôi
nhìn điểm tôi đi
chán quá
trả lời đê bạn
Cho tam giác ABC cân tại A có AB= 5cm, BC= 6cm. Hai tia phân giác BE và CF cắt nhau tại I (E thuộc AC, F thuộc AB)
a. CM BE=CF
b. Tính khoảng cách từ điểm I đến cạnh BC
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.