vẽ hình và nêu cách dựng hình chữ nhật ABCD biết nửa chu vi bằng 5 cm và góc nhọn tạo bởi 2 đường chéo bằng 70 độ
diện tích hình chữ nhật ABCD có độ dài đường chéo bằng 8cm và góc nhọn tạo bởi 2 đường chéo bằng 30 độ là
Diện tích hình chữ nhật ABCD có độ dài đường chéo là 8cm và góc nhọn tạo bởi hai đường chéo bằng 300 là ... cm2.
Dựng hình thoi ABCD biết góc A = 30 độ và tổng hai đường chéo bằng 5 cm. (phân tích, nêu cách dựng và dựng hình.)
Diện tích hình chữ nhật ABCD có độ dài đường chéo là 8 cm và góc nhọn tạo bởi 2 đường chéo là 30 độ là ....cm?
BC=8 => CO=4 (O là trung điểm)
xét tam giác vuông COH có góc O bằng 30 độ => CH =1/2OC=2
=> SABDC=2SACD=2.1/2.2.8=16 (cm2)
Cho hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Góc nhọn tạo bởi hai đường chéo là:
A. 30 °
B. 45 °
C. 60 °
D. 90 °
Hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Tính góc nhọn tạo bởi hai đường chéo ?
Gọi O là giao điểm của hai đường chéo AC và BD.
AC = BD (tính chất hình chữ nhật)
\(\Rightarrow OA=OD=\dfrac{1}{2}AC\)
\(AD=\dfrac{1}{2}AC\left(gt\right)\)
\(\Rightarrow OA=OD=AD\)
\(\Rightarrow\Delta OAD\) đều
\(\Rightarrow\widehat{AOD}=60^0\)
Hình chữ nhật ABCD có chiều rộng AD bằng nửa đường chéo AC. Số đo góc nhọn tạo bởi hai đường chéo là??
Xét tam giác vuông ACD vuông tại A có AD=AC/2 => ACD=30 độ => ADC=60 độ
Gọi giao điểm 2 đường chéo của hcn là O => OA=OD => tam giác AOD cân tại O mà ADC = 60 độ => tam giác AOD đều => AOD=60 độ :)
dễ thế đáp án bằng 60 . tick mình nhé .chúc bạn học tốt
Dựng hình chữ nhật ABCD biết đường chéo AC = 4cm, góc tạo bởi hai đường chéo bằng 180 0
* Cách dựng:
- Dựng ∆ OAB biết OA = OB = 2cm, ∠ (AOB ) = 100 0
- Trên tia đối tia OA dựng điểm C sao cho OC = OA = 2cm
- Trên tia đối tia OB dựng điểm D sao cho OD = OB = 2cm
Nối AD, BC, CD ta có hình chữ nhật ABCD cần dựng
* Chứng minh:
Ta có: OA = OC, OB = OD
Suy ra tứ giác ABCD là hình bình hành.
Vì AC = BD = 4 (cm) nên hình bình hành ABCD là hình chữ nhật.
cho hình chữ nhật ABCD biết đường chéo bằng 4cm ; góc nhọn tạo bởi hai đường chéo là 30.Tính diện tích ABCD
Gọi giao điểm của hai đường chéo là \(O\) .
Theo bài ra thì \(\widehat{AOD}=30^o\)
Theo tính chât hình chữ nhật thì \(OA=OD\) ( cùng bằng nửa độ dài đường chéo )
\(\Rightarrow\Delta OAD\) cân tại O
\(\Rightarrow\widehat{CAD}=\widehat{OAD}=\frac{180^o-\widehat{AOD}}{2}=\frac{180^o-30^o}{2}=75^o\)
Xét tam giác vuông tại D là DAC :
\(\frac{AD}{AC}=cos\widehat{CAD}\Rightarrow AD=cos\widehat{CAD}.AC=cos75^o.4\)
\(\frac{DC}{AC}=sin\widehat{CAD}\Rightarrow DC=ACsin\widehat{CAD}=4sin75^o\)
Do đó diện tích ABCD là :
\(AD.DC=4cos75^o.4sin75^o=4\left(cm^2\right)\)