Tính giá trị của P = \(\sqrt{1+2013^2+\frac{2013^2}{2014^2}}\)+\(\frac{2013}{2014}\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
giá trị của biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}}\)
giá trị biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}là?\)
Tính giá trị của biểu thức :
\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2013^2}+\frac{1}{2014^2}}\)
Mỗi biểu thức trong dấu căn có dạng:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\) ( Với \(k\ge2\))
Ta có:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)
\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)
Mỗi biểu thức trong dấu căn có dạng:
1+1k2 +1(k+1)2 ( Với k≥2)
Ta có:
1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2
=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2
⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1
⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014
Mỗi biểu thức trong dấu căn có dạng:
1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}1+k21+(k+1)21 ( Với k\ge2k≥2)
Ta có:
1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}1+k21+(k+1)21=k2(k+1)2k2(k+1)2+(k+1)2+k2=k2(k+1)2k4+2k3+k2+k2+2k+1+k2
=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}=k2(k+1)2k4+2k2(k+1)+(k+1)2=(k(k+1))2(k2+k+1)2
\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}⇒1+k21+(k+1)21=k2+kk2+k+1=1+k(k+1)1=1+k1−k+11
\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}⇒S=1+1−21+1+21−31+1+31−41+...+1+20131−20141=2014−
giúp tui voi \(\sqrt{1+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)
lục sách tìm !có đấy ! tuy em có mới học lớp 5 nhưng thấy qua bai này rùi !!!!!
Cho \(A=\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}\)
tìm giá trị của \(A\)
Ta có:
\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+..+\frac{2}{2013}+\frac{1}{2014}\)
\(=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{2}{2013}+1\right)+\left(\frac{1}{2014}+1\right)+1\)
\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2015}{2015}\)
\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)\)
Do đó: \(A=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}=2015\)
Tính giá trị lớn nhất
\(A=\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}\)
ĐK : \(\hept{\begin{cases}x\ge2013\\y\ge2014\end{cases}}\)
Ta có \(A=\frac{\sqrt{\left(x-2013\right).2015}}{\sqrt{2015}\left(x+2\right)}+\frac{\sqrt{\left(x-2014\right).2014}}{\sqrt{2014}.x}\le\frac{\frac{x-2013+2015}{2}}{\sqrt{2015}\left(x+2\right)}+\frac{\frac{x-2014+2014}{2}}{\sqrt{2014}.x}\)
\(\Rightarrow A\le\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
Vậy .............................................
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
Giá trị biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}\)là...