Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Le Chi Toan
Xem chi tiết
Nguyễn Thị Minh Hòa
Xem chi tiết
evermore Mathematics
3 tháng 4 2016 lúc 13:18

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Nguyễn Thị Minh Hòa
3 tháng 4 2016 lúc 13:29

cảm ơn bạn nha

Mèo Méo
Xem chi tiết
Nguyễn Tuyết Mai
Xem chi tiết
Le Thi Khanh Huyen
6 tháng 4 2015 lúc 21:50

Ta có:

\(\frac{1}{5^2}

hello online math
6 tháng 4 2015 lúc 22:43

thuỳ dung đúng đấy

Hương Thảo BD
30 tháng 3 2018 lúc 20:08

ME TOO

Phạm Thanh Huyền
Xem chi tiết
Thanh Hằng Nguyễn
2 tháng 8 2017 lúc 12:30

Đặt :

\(A=\frac{1}{5^2}+\frac{1}{6^2}+.........+\frac{1}{2007^2}\)

Ta thấy :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

...........................

\(\frac{1}{2007^2}>\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+........+\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{2007}-\frac{1}{2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(\Leftrightarrow A>\frac{1}{5}\)

Mèo Méo
Xem chi tiết
headsot96
20 tháng 7 2019 lúc 14:31

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2006.2007}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2006}-\frac{1}{2007}=\frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)

huy nguyễn
Xem chi tiết
T.Ps
1 tháng 8 2019 lúc 15:58

#)Giải :

Ta có : \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2007.2008}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2007}-\frac{1}{2008}=\frac{1}{5}-\frac{1}{2008}=\frac{2003}{10004}>\frac{1}{5}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Nguyễn Minh Đăng
1 tháng 8 2019 lúc 16:00

\(\frac{1}{5}-\frac{1}{2018}>\frac{1}{5}????\)

T.Ps
1 tháng 8 2019 lúc 16:02

#)Góp ý :

Chết ! máy tính lỗi rùi :v xin lỗi bn, mk tính nhầm, ph là \(\frac{2003}{10040}>\frac{1}{5}\) nhé @@ sai òi

Nguyễn Xuân Bảo
Xem chi tiết
vương gia kiệt
17 tháng 8 2017 lúc 7:46

Ta có : 1/5^2 + 1/6^2 + 1/7^2 +....+ 1/2007^2 > 1/5.6 + 1/6.7 + 1/7.8 +...+ 1/2007.2008 = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 +....+ 1/2007 - 1/2008 = 1/5 -1/2008 ko > 1/5

Nguyễn Xuân Bảo
18 tháng 8 2017 lúc 21:07

nhưng cái biểu thức nó cũng lớn hơn cái biểu thức bạn đưa ra nên ko thể chứng minh nó >\(\frac{1}{5}\)

Nguyễn Xuân Bảo
18 tháng 8 2017 lúc 21:19

mk ms nghĩ ra câu trả lời này, mn kiểm tra hộ mk xem nó có đúng ko nhé

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6.7}+...\frac{1}{2007.2008}=B\)

\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}...+\frac{1}{2007}-\frac{1}{2008}\)

\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\left(\frac{1}{6}-\frac{1}{2008}\right)>\frac{1}{5}=\left(\frac{1}{4}-\frac{1}{20}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)\)

\(\Rightarrow B>\frac{1}{5}\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

Bùi Duy Vương
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2017 lúc 15:48

bài này dài lắm

\(A=\frac{\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}}{\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}}\)

\(A=\frac{\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)}{\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)}\)

\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}\)

\(A=\frac{\left(\frac{1}{100}\right)}{\left(\frac{1}{25}\right)}=\frac{1}{4}\)

\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{125}{42}}{\frac{2000}{43}-\frac{250}{252}-\frac{2000}{257}}\)

\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{6000}{2016}}{\frac{2000}{43}-\frac{2000}{2016}-\frac{2000}{257}}\)

\(B=\frac{16.\left(\frac{1}{9}-\frac{1}{127}+\frac{1}{2017}\right)}{5.\left(\frac{1}{2017}+\frac{1}{9}-\frac{1}{127}\right)}-\frac{6000.\left(\frac{1}{43}-\frac{1}{257}-\frac{1}{2016}\right)}{2000.\left(\frac{1}{43}-\frac{1}{2016}-\frac{1}{257}\right)}\)

\(B=\frac{16}{5}-3=\frac{1}{5}\)

Đặt \(C=\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}\)

\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2005^2}+\frac{1}{2006^2}+\frac{1}{2007^2}\)

\(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}+\frac{1}{2006.2007}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2006}+\frac{1}{2006}-\frac{1}{2007}\)

\(=\frac{1}{4}-\frac{1}{2017}\left(đpcm\right)\)

\(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2005.2006}+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2007}-\frac{1}{2008}\)

\(=\frac{1}{5}-\frac{1}{2008}\left(đpcm\right)\)

Vậy \(A>\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}>B\)