Cho ba tỉ số bằng nhau là : \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
Cho ba tỉ số bằng nhau là \(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\). tìm giá trị của mỗi tỉ số đó
nếu a+b+c khác 0 thì a/b+c=b/a+c=c/a+b=1/2
nếu a+b+c=0 thì b+c=-a
c+a=-b
a=b=-c nên a/b=
Nếu \(a+b+c+0\Rightarrow\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\).
Suy ra: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-\frac{1}{2}\).
Nếu \(a+b+c\ne0\) , áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\).
Nếu \(a,b,c\ne0\)thì theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu \(a+b+c=0\)thì \(b+c=-a;c+a=-b;a+b=-c\)
\(\Leftrightarrow\)Tỉ số của \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}=-1\)
Cho ba tỉ số bằng nhau là:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Chứng minh rằng a=b=c
Cho ba tỉ số bằng nhau :\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)tìm giá trị của mỗi tỉ số đó ?
Nếu : \(a+b+c\ne0\) thì theo tính chất dãy tỉ số bằng nhau :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu : a+b+c = 0 thì b+c = - a ; c+a = - b ; a+b= - c nên mỗi tỉ số : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Cho ba tỉ số bằng nhau là \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tìm giá trị của mỗi tỉ số đó
Ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}.\)
+ Nếu \(a+b+c\ne0.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)
+ Nếu \(a+b+c=0.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-c\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1.\)
Chúc bạn học tốt!
Cho ba số hữu tỉ \(\frac{6}{5}\), \(\frac{7}{-4}\),\(\frac{2}{-3}\)
a. Viết ba số hữu tỉ bằng mối số hữu tỉ trên và có mẫu là số dương
b. Viết ba số hữu tỉ bằng mối số hữu tỉ trên và có mẫu là số dương bằng nhau
a. 3 số hữu tỉ có mẫu dương: \(\frac{6}{5},\frac{-7}{4},\frac{-2}{3}\)
b. 3 số hữu tỉ có mẫu là các số dương bằng nhau: \(\frac{72}{60},\frac{105}{60},\frac{40}{60}\)
ba số hữư tỉ trên có mẫu dương là
6/5;-7/4;-2/3
ba số hữư tỉ trên có mẫu dương bằng nhau là
72/60;105/60;40/60
Cho ba tỉ số bằng nhau là a/b+c, b/c+a, c/a+b. Tìm giá trị của mỗi tỉ số đó
Nêu a+b+c khác 0 thi theo tinh chat day ti sô bang nhau ta co. a/b+c=b/c+a=c/a+b=a+b+c/2(a+b+c)=1/2N êu a+b+c=0 thi b+c=-a; c+a=-b;a+b=-c. Nêna/b+c,b/c+a,c/a+b =-1
Vì =\(\frac{b}{a+c}\)=\(\frac{a}{b+c}\)\(\frac{c}{a+b}\)
Nên a=b=c
suy ra \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)
Vậy\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)= \(\frac{1}{2}\)
Cho ba tỉ số bằng nhau là a/b+c, b/c+a, c/a+b. Tìm giá trị của mỗi tỉ số đó
Cho 3 tỉ số bằng nhau là
\(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\)
Tính giá trị mỗi tỉ số đó
Từ \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Tương tự \(\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
\(\Rightarrow2a=b+c\)
\(\Rightarrow2b=c+a\)
\(\Rightarrow2c=a+b\)
ta có hpt:
\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}\hept{\begin{cases}b=2a-c\\2b=c+a\\2c=a+b\end{cases}}}\)
thế b ta đc
\(\hept{\begin{cases}4a-2c=c+a\\2c=a+2a-c\end{cases}\hept{\begin{cases}3a-3c=0\\3c=3a=0\end{cases}\Rightarrow}}a=c\)
\(b=2a-c=a\)
\(\Rightarrow a=b=c\)vậy pt vô số nghiệm
Chi ba tỉ số bằng nhau là \(\frac{a}{b+c}\) , \(\frac{b}{c+a}\) , \(\frac{c}{a+b}\) . TÌm giá trị của mỗi số đó
Nếu a+b+c khác 0 thì theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}\) = \(\frac{b}{c+a}\) = \(\frac{c}{a+b}\) = \(\frac{a+b+c}{2\left(a+b+c\right)}\) = \(\frac{1}{2}\)
Neeua a+b+c = 0 thì b+c= -a, c+a= -b, a+b= -c nên mỗi tỉ số \(\frac{a}{b+c}\) , \(\frac{b}{c+a}\) , \(\frac{c}{a+b}\) bằng -1