Cho \(x+y\ne0\)và \(\frac{x^2+y^2}{x+y}=\frac{5}{3};\frac{x^4+y^4}{x^3+y^3}=\frac{17}{9}\). Tính giá trị của biểu thức U=\(\frac{x^6+y^6}{x^5+y^5}\)
Giúp mình với đang ôn hsg thấy bài này
Cho \(x\ne0\),\(y\ne0\) và x+y=1. Tính\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\) (với \(x\ne0,y\ne0\))
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\)
Ta có: \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\Rightarrow\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-1\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-2\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\ge1\)
\(\Rightarrow P\ge1\)
Vậy \(Min_P=1\)
Áp dụng bất đẳng thức cosi cho 2 số dương ta có :
P>=\(2\sqrt{\frac{x^2\cdot y^2}{y^2\cdot x^2}}-3\cdot2\cdot\sqrt{\frac{x\cdot y}{y\cdot x}}+5=2-6+5=1\)
Vậy Min P =1 . dấu = xảy ra khi x=y=1
cho \(x,y\ne0\).Tìm GTNN của biểu thức:
\(B=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3(\frac{x}{y}+\frac{y}{x})+5\)
ai đúng mình tik cho nhá =))
bài 2 : rút gọn các phân thức sau :
a.\(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\)
b.\(\frac{x^2+4x+3}{2x+6}\left(x\ne-3\right)\)
c.\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\left(y\ne0;x+y\ne0\right)\)
d. \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\)
e. \(\frac{x^2-xy}{3xy-3y^2}\left(x\ne y,y\ne0\right)\)
f. \(\frac{4x^2-4xy}{5x^3-5x^2y}\left(x\ne0,x\ne y\right)\)
g. \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
https://hoc24.vn/hoi-dap/question/697806.html
Giải nhanh hộ mk nha
Cho \(x\ne0,y\ne0,x+y=1\). Tính
\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x+y\right)}{x^2y^2+3}\)
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-xz\ne0;z^2-xy\ne0\) thỏa mãn \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\) . CMR \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1)
=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
\(\text{Tính }C=\frac{\left(1+\sqrt{3}\right)x^2y-\left(2-\sqrt{5}\right)xy^2}{x^3+y^3}\text{ với }x,y\ne0\text{ và }\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)
Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)
\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)và \(x+y+z\ne0\)Tính \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)