Tìm các giá trị của x để biểu thức sau có giá trị dương
\(\sqrt{x}-x\)
Tìm các giá trị nguyên dương của x để biểu thức \(A=2\sqrt{x-1}+x\)có giá trị nguyên
Tìm các giá trị của x để cho biểu thức sau có giá trị dương : M = ( x + 5 ) ( x + 9 )
1)
TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ DƯƠNG
(1/2-2).(1/3-X)
2)TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ ÂM
A)X^2-2/5X B)E=X-2/X-6
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
tìm giá trị của x để các biểu thức sau có giá trị dương:
a) (-2+2/5x +1 ) (x-2024)
b) x-2/x+5
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
\(x\) | \(\dfrac{5}{2}\) 2024 |
\(x\) - 2024 | - - 0 + |
- 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
\(x\) | -5 2 |
\(x-2\) | - - 0 + |
\(x+5\) | - 0 + 0 + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
Tìm giá trị của x để các biểu thức sau có giá trị dương: A= x^2+4x
A=x2+4x=x(x+4)
để A>0 suy ra x(x+4)>0 suy ra x>0,x+4>0 hoặc x<0,x+4<0
th1: nếu x>0,x+4>0 suy ra x>0, x>-4 suy ra x>0
th2: nếu x<0,x+4<0 suy ra x<0,x<-4 suy ra x<-4
vậy x>0 hoặc x<-4
bài tập :Tìm các giá trị của x để biểu thức sau có giá tị dương :
a) M=(x+5)(x+9)
b) Khi nào thì biểu thúc B=x^2-3x có giá trị dương
c) Tìm x để biểu thức A= x+3/x-1 có giá trị âm
(mọi người làm bảng xét dấu nhé)
Tìm các giá trị nguyên của x để biểu thức sau nhận giá trị dương: x^2 +x
x2+x=x(x+1)x2+x=x(x+1)
x(x+1)x(x+1)dương ⇔⇔x>0x>0 Hoặc x0x0 x+10x+10 Hoặc x−1x−1 x0x0 hoặc \(x
Tìm các giá sau của x để các biểu thức sau có giá trị dương : \(x^2+4x\)
x2 + 4x = x . ( x + 4 )
để A > 0
\(\Rightarrow\orbr{\begin{cases}x\text{ và }x+4\text{ cùng dương}\\x\text{ và }x+4\text{ cùng âm}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}0< x< -4}\)
X không tồn tại
Tìm tập hợp các giá trị của x để biểu thức sau có giá trị nguyên
\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để biểu thức trên nguyên <=> \(\frac{2}{\sqrt{x}-1}\) nguyên
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}-1=-2\Leftrightarrow\sqrt{x}=-1\Leftrightarrow x=1\)
\(\Rightarrow\sqrt{x}-1=-1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(\Rightarrow\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
\(\Rightarrow\sqrt{x}-1=2\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Vậy để biểu thức đạt giá trị nguyên khi : x = { 0 ; 1 ; 4 ; 9 }
đương nhiên rồi
kết quả là(0;4;9) ai giỏi thì giải đi