CMR:x thuộc số hữu tỉ |x + y| \(\le\) |x| + |y|
hỏi khi nào dấu đẳng thức xảy ra
Cho x, y thuộc Q [ tập hợp số hữu tỉ ] , Chứng minh rằng
| x | + | y | lớn hơn hoặc = | x + y |
( Dấu " = " suy ra khi nào )
Cho x,y là các số thực dương thỏa mãn x+ 3y \(\le\) 10
Chứng minh rằng \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Dấu đẳng thức xảy ra khi nào ?
+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)
\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)
\(\Rightarrow xy^9\le3^9\)
+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)
\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)
Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)
x + 25 = 64
x = 64 - 25
x = 39
Vậy x = 39
Áp dụng bất đẳng thức AM-GM cho ba số dương, ta có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}.\frac{1}{\sqrt{x}}.x}=3\left(1\right)\)
\(\frac{27}{\sqrt{3y}}+\frac{27}{\sqrt{3y}}+3y\ge3\sqrt[3]{\frac{27}{\sqrt{3y}}.\frac{27}{\sqrt{3y}}.3y}=27\left(2\right)\)
Cộng theo vế các bất đẳng thức (1) và (2) ta được: \(2\left(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\right)+x+3y\ge30\)
\(\Rightarrow2\left(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\right)\ge30-\left(x+3y\right)\ge20\)(Do theo giả thiết thì \(x+3y\le10\))
\(\Rightarrow\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)(đpcm)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Cho x,y là các số thực dương thỏa mãn x+3y\(\le\) 10
CMR: \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}\ge10.\) Dấu đẳng thức xảy ra khi nào?
Lời giải:
Áp dụng BĐT SVac-xơ:
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}\geq \frac{(1+3+3+3)^2}{\sqrt{x}+3\sqrt{3y}}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+3y)(1+9)\geq (\sqrt{x}+3\sqrt{3y})^2\)
\(\Rightarrow \sqrt{x}+3\sqrt{3y}\leq \sqrt{10(x+3y)}\leq 10(2)\) do \(x+3y\leq 10\)
Từ \((1);(2)\Rightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}\geq \frac{100}{10}=10\) (đpcm)
Dấu bằng xảy ra khi \(\frac{\sqrt{x}}{1}=\frac{\sqrt{3y}}{3}; x+3y=10\Rightarrow x=1;y=3\)
Chứng minh bất đẳng thức:\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\le\sqrt{x+9}\) với x là số thực không âm. Dấu đẳng thức xảy ra khi nào?
chứng minh bất đẳng thức: 1/x +1/y +1/z >= 9/(x+y+z) dấu “=” xảy ra khi x = y = z,
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
Áp dụng BĐT Cauchy- schwarz:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
(Dấu "="\(\Leftrightarrow x=y=z\))
CMR không tồn tại 2 số hữu tỉ x và y trái dấu,ko đối nhau thỏa mãn đẳng thức 1/x+y=1/x+1/y
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
Cho các số thực dương x y z và thõa mãn điều kiện : xyz=1 chứng munh bất đẳng thức 1/2x+y+3 + 1/2y+z+3 +1/2z+x+3 <= 1/2. Dấu bằng xảy ra khi nào
Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}
Lời giải:
VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm
Cách khác:
Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với
a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0
Vì a3>36 nên
Bài 1: CMR với mọi số thực x, y ta luôn có: (Chỉ rõ dấu "=" xảy ra khi nào)
a) |x + y| \(\le\)|x| + |y|
b) |x| - |y| \(\le\)|x - y|
a) Ta có : \(|x+y|\le|x|+|y|\)
\(\Leftrightarrow\left(x+y\right)^2\le\left(|x|+|y|\right)^2\)
\(\Leftrightarrow x^2+2.x.y+y^2\le x^2+2.|x|.|y|+y^2\)
\(\Leftrightarrow xy\le|x||y|\)
Do bất đẳng thức cuối đúng nên bất đẳng thức đầu đúng.
Dấu bằng xảy ra khi \(xy=|x||y|\Rightarrow xy\ge0\)
b) Từ câu (a) ta có: \(|x-y|+|y|\ge|x-y+y|=|x|\)
\(\Rightarrow|x-y|\ge|x|-|y|\)
Dấu bằng xảy ra khi A-B và B cùng dấu.
Chứng minh rằng không tồn tại 2 số hữu tỉ x,y trái dấu k đối nhau thỏa mãn đẳng thức 1/x+y= 1/x+1/y
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)
=> (x + y)2 = xy
Vì (x + y)2 >= 0 (1)
Mà xy < 0 (vì x, y trái dấu) (20
Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.
Cho **** nha