Tìm nghiệm nguyên của phương trình y^2=1+x+x^2+x^3+x^4
Mấy bạn chuyên toán giúp mình với. Cần gấp
\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)
\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)
\(=\left(2x^2+16x+7\right)^2-49\)
\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)
Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).
Tìm nghiệm nguyên của phương trình: \(\left(x^2+y^2+1\right)^2-5x^2-4y^2-5=0.\)
Giúp mình với, mình cần gấp
phân tích đa thức thành nhân tử
Tìm mọi nghiệm ngyên của phương trình:\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
THÁNH NÀO CHUYÊN TOÁN VÀO GIẢI HỘ EM CÁI, CẢ HAI CÂU EM GỬI LÊN CẦN GẤP TRONG CHIỀU NAY.
Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
Cho phương trình 2(2m-3)(m+1)√x=3/x-m/2.Tìm giá trị tham số m để phương trình có nghiệm x=4.Giúp mình với ạ,mình đang cần gấp:(((
Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Tìm phương trình ẩn x với hệ số nguyên có nghiệm là \(\frac{2}{1-\sqrt[3]{2}}\)
Giúp mình với! Mình cần gấp ạ!
Đặt: \(a=\frac{2}{1-\sqrt[3]{2}}\)
<=> \(\left(1-\sqrt[3]{2}\right)a=2\)
<=> \(a-2=\sqrt[3]{2}a\)
<=> \(\left(a-2\right)^3=\left(\sqrt[3]{2}a\right)^3\)
<=> \(a^3-6a^2+12a-8=2a^3\)
<=> \(a^3+6a^2-12a+8=0\)
Vậy phương trình ẩn x cần tìm là: \(x^3+6x^2-12x+8=0\)
Cho phương trình: x^3+ax-4x-4=0
a) Xác định a để phương trình có nghiệm x=1
b) Với a vừa tìm được, tìm các nghiệm còn lại của phương trình.
Các bạn giúp mình với, mình cần gấp lắm, xin đa tạ.
a) với x=1=> (1)^3+a.1-4.1-4=0<=> 1+a-8=0<=>a=7
b) ta có phương trình
x^3+7x-4x-4 =0<=> x^3+3x-4=0
<=> x^3-x+4x-4=0
<=> x(x^2-1)+4(x-1)=0
<=> x(x-1)(x+1)+4(x-1)=0
<=> (x-1)(x^2+x+4)=0
<=> ..... tự làm tiếp nha
Cho phương trình: x2-2(m-1)x-m-3=0 (1)
a) giải phương trình với m=-3
b) tìm m để phương trình (1) có 2 nghiệm thỏa mãn hệ thức x21 + x22 =10
c) tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc giá trị của m
Mn giúp mình với,mình cần gấp phần a mình làm đc rồi mn giúp mình phần b,c
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
Giải phương trình nghiệm nguyên:
\(x^3-\frac{13}{2}xy-y^3=2020\)
Bạn nào giải giúp mình câu này với mình tick cho ;-; mình đang cần gấp, xin cảm ơn
TL
XY=60
Học tốt
Sai mik sorry
xem có sai đề ko