Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
19 tháng 10 2017 lúc 16:10

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

Lyzimi
Xem chi tiết
Thắng Nguyễn
27 tháng 8 2017 lúc 9:35

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)

Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)

BaBie
24 tháng 8 2017 lúc 15:12

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Lyzimi
24 tháng 8 2017 lúc 16:10

BaBie làm cái chi đây 

Nguyễn Minh Hoàng
Xem chi tiết
Đà Giang
Xem chi tiết
alibaba nguyễn
28 tháng 9 2018 lúc 13:50

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

dam thu a
Xem chi tiết
Akai Haruma
24 tháng 2 2020 lúc 15:58

Lời giải:

Đặt biểu thức vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(A[x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)]\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2\)
Vì $xyzt=1$ nên:

\(x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)=\frac{1}{t}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{x}+\frac{1}{t}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Do đó:

$A. 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2$

$\Rightarrow A\geq \frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{3}$

Áp dụng BĐT AM-GM: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq 4\sqrt[4]{\frac{1}{xyzt}}=4$

Vậy $A\geq \frac{4}{3}$ (đpcm)

Khách vãng lai đã xóa
Nguyễn Minh Hiển
Xem chi tiết
Trần Việt Anh
Xem chi tiết
🍧《Akarui♌tsuki》🍨
12 tháng 8 2020 lúc 12:29

Đây mà là tiếng việt lớp 3 à

Khách vãng lai đã xóa
Thắng Nguyễn
Xem chi tiết
Aeris
Xem chi tiết

Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)

Tương tự  \(1+y^2=\left(x+y\right)\left(y+z\right)\)

\(1+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A ta được

\(P=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

=2(xy+xz+yz)=2

Incursion_03
17 tháng 6 2019 lúc 8:45

\(b,VT=VP\)

\(\Leftrightarrow\frac{x}{xy+yz+zx+x^2}+\frac{y}{xy+yz+zx+y^2}+\frac{z}{xy+yz+zx+z^2}\)

                                                                                                                                                                                                                                                                                    \(=\frac{2xyz}{\sqrt{\left(xy+yz+zx+x^2\right)\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}}\)

\(\Leftrightarrow\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

                                                                                \(=\frac{2xyz}{\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)\left(z+x\right)\left(y+z\right)}}\)

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Leftrightarrow xy+xz+xy+yz+xz+yz=2xyz\)

\(\Leftrightarrow2=2xyz\)

\(\Leftrightarrow xyz=1\)

Đù =)))