cho \(E=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)và \(F=\frac{n+2}{n}\)với n thuộc N* . Tính \(\frac{E}{F}\)
1.Cho E=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)và F=\(\frac{n+2}{n}\)\(\forall\)\(n\inℕ^∗\)Tính \(\frac{E}{F}\)
Cho \(E=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)
và \(F=\frac{n+2}{n}\)với \(n\in N^{\cdot}.\)Tính \(\frac{E}{F}\)
a)A=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
b)\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
c)C=\(\frac{1}{2!}+\frac{2}{3!}+...+\frac{n-1}{n!}\)
d)D=\(1+2^2+3^2+...+98^2\)
e)E=\(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
f)F=\(2^{2010}-2^{2009}-...-2-1\)
g)G=\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)\)
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
Bài 1:Tính S= \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Bài 2: Tính S= 1+3+9+27+...+1438907
Bài 3: Cho \(f\left(1\right)=1;f\left(m+n\right)=f\left(m\right)+f\left(n\right)+mn.\)Tính f(10), f(2015) (Với m, n là các số nguyên dương)
Bài 1
Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)
Tương tự như trên ta được
S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100
= 98 + 1/2 - 1/100
= 9849/100
tính tích sau với n thuộc N* và n >= 2
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n}\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n}\right)\)(n>=2)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot n-1}{2\cdot3\cdot4\cdot...\cdot n}\)(rút gọn đi)
\(=\frac{1}{n}\)
mk k chắc nữa
Chúc bạn học tốt!^_^
bài 1
a) cho B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\). Chứng minh B >99
b)chứng minh \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n\right)⋮2^n\)với n nguyên dương
c) cho đa thức f(x) = ax^3 + bx^3 + cx + d . với f(0) và f(1) là các số lẻ. CMR f(x) không có nghiệm là số nguyên.
Tính : \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)\)với n thuộc N ;n lớn hơn hoặc bằng 2
CMR với n thuộc N; n>=2 ta có:
\(A=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)\(\frac{1}{3}\)
Tính
E=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{ }{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
chỗ phân số thiếu tử thì điền tử bằng 1 nha
dùng sai phân cuối cùng ra:
1- 1/n+3 = n+2 / n+3
\(E=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(=\frac{1}{3}\left(\frac{1}{6}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
P/S: tham khảo nha
Đến đây bn thu gọn và tính tiếp nhé