Cho m+ n =1 và m.n khác 0. Chứng minh rằng:
m/(n^3-1) + n/(m^3-1) = 2(mn-2)/(m^2n^2+3)
Cho m+n = 1 và m.n khác 0. Chứng minh rằng:
m/(n^3-1) + n/(m^3-1) = 2(mn-2)/(m^2n^2+3)
cho 5 điểm M,N,P,Q,R.vbiết P nàm giũa 2 điểm M và N.Điểm Q nàm giữa 2 điểm N và P.Điểm R nằm giữa 2 điểm P và M
1)chứng minh rằng:M,N,P,Q,R thẳng hàng
2)chứng minh rằng P nằm giữa Q,R
3)cho NP=26cm,PR=20cm,QR=42cm,MP=28cm.Tính NQ,MR,MN
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Bài 1: Cho m^2-2n^2=m.n .Tính m-n/m+n (điều kiện: m+n khác 0)
Bài 2: cho 9x^2+4y^2=20xy . Tính A= 3x-2y/3x+2y
Bài 3: cho 4a^2+b^2=5ab (2a>b>0). Tính M= ab/4a^2-b
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
*Mong các bạn giải hết cho mình nha*
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4
c/ (2n +2)12 = 24(n+1) chia hết cho 24
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3)m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)