Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Quyên
Xem chi tiết
sakura
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 8:44

a) ĐKXĐ : \(x\ne5;x\ne-m\)

Khử mẫu ta được :

\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)

\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)

\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)

Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)

Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)

Để nghiệm trên là nghiệm của PT ban đầu thì ta có :

\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)

Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu

Khách vãng lai đã xóa
Thanh Tùng DZ
27 tháng 4 2020 lúc 8:49

b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)

PT đã cho đưa về dạng x(m+2) = 2m(4-m)

Nếu m = -2 thì 0x = -24 ( vô nghiệm )

Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)\(x\ne2;x\ne m;x\ne2m\) )

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)

Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)

Khách vãng lai đã xóa
Trường lại
Xem chi tiết
Tran Thi Ha Phuong
Xem chi tiết
Cô Hoàng Huyền
6 tháng 3 2018 lúc 11:26

ĐK: \(x\ne\pm m\)

\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)

\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)

\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)

\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)

Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)

Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)

Với \(m-1\ne0\Leftrightarrow m\ne1\)

Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)

KL:

Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)

Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)

nguyen le duy hung
Xem chi tiết
luyen hong dung
15 tháng 6 2018 lúc 16:05

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

Zero Two
Xem chi tiết
cẩm ly nguyễn
Xem chi tiết
Thanh Tùng DZ
15 tháng 1 2019 lúc 15:47

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\frac{m^2.\left(x+2-x+2\right)\left(x+2+x-2\right)}{8}-4x=m^2-2m+1+6m+3\)

\(\frac{8m^2x}{8}-4x=m^2+4m+4\)

\(x.\left(m-2\right)\left(m+2\right)=\left(m+2\right)^2\)

+) với m = 2 thì 0x = 4 ( vô nghiệm )

+) với m = -2 thì 0x = 0 ( vô số nghiệm )

+) với m \(\ne\)2 và -2 thì x có 1 nghiệm \(\frac{m+2}{m-2}\)

Nghịch Dư Thủy
Xem chi tiết
Ngọc Phạm
Xem chi tiết