P= x+2y+3z/x-2y+3z
Tìm x,y,z biết x:y:z=5:4:3
Làm giúp mk nha^^
Biết x:y:z = 5:4:3. Giá trị biểu thức
\(P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}\)là.....
Giải nhanh giúp mk nha !!
Bài làm
Nếu mà là -100 thì sẽ tròn là số 2 thay vì là 2√10
Ta có: \(x:y:z=3:4:5=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
=> x = 3k
y = 4k
z = 5k
Lại có: 2x2 + 2y2 - 3z2 = -1000
=> 2(3k)2 + 2(4k)2 - 3(5k)2 = -1000
=> 2 . 9k2 + 2 . 16k2 - 3 . 25k2 = -1000
=> 18k2 + 32k2 - 75k2 = -1000
=> -25k2 = -1000
=> k2 = 40
=> k = \(\pm\sqrt{40}=\pm2\sqrt{10}\)
Thay \(k=2\sqrt{10}\) vào x = 3k, y = 4k và z = 5k
Ta được: x = 3 . \(2\sqrt{10}\)= \(6\sqrt{10}\)
y = 4 . \(2\sqrt{10}\) = \(8\sqrt{10}\)
z = 5 . \(2\sqrt{10}\) = \(10\sqrt{10}\)
Vậy x = \(6\sqrt{10}\)
y = \(8\sqrt{10}\)
z = \(10\sqrt{10}\)
tìm x y z biết x:y:z = 3:4:5 và 2x^2+2y^2-3z^2=-100
Theo đề ta có:
\(x:y:z=3:4:5\) và \(2x^2+2y^2-3z^2=-100\)
từ \(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số băng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{2y^2}{2.4^2}=\dfrac{3z^2}{3.5^2}=\dfrac{2x^2+2y^2-3z^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)
\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)
Vậy x=12 ; y=16 ; z=20
Ta có :
\(2x^2+2y^2-3z^2=-100\)
\(x:y:z=3:4:5\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
\(\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có ;
\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3x^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=4\Leftrightarrow x=12\\\dfrac{y}{4}=4\Leftrightarrow y=16\\\dfrac{z}{5}=4\Leftrightarrow z=20\end{matrix}\right.\)
Vậy ..
Tìm x, y, z biết x-1/2=y-2/3=z-3/4 và x-2y+3z=14
giúp mk nha, mai mk kiểm tra òi
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(y-2\right)}{6}=\frac{3.\left(z-3\right)}{12}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{4-6+12}=1\)
\(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
Vậy x=3,y=5,z=7
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{\left(y-2\right)\cdot2}{3\cdot2}=\frac{\left(z-3\right)\cdot3}{4\cdot3}\)\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(y-4\right)+\left(3z-9\right)}{2-6+12}\)\(=\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}\)\(=\frac{14-6}{8}=\frac{8}{8}=1\)
\(\frac{x-1}{2}=1\Rightarrow x=2\cdot1+1=3\)
\(\frac{y-2}{3}=1\Rightarrow y=1\cdot3+2=5\)
\(\frac{z-3}{4}=1\Rightarrow z=1\cdot4+3=7\)
Vậy \(x=3,y=5,z=7\)
Gook luck for you !!!
Tìm x,y,z biết x:y:z=3:4:5 và \(^{2x^2+2y^2-3z^2}\)=-100
Ta có:x:y:z=3:4:5
=>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Mà 2x2+2y2-3z2=-100
=>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=>x2=4x3=12=>x=\(\sqrt{12}\)
y2=4x4=16=>x=4
z2=4x5=20=>x=\(\sqrt{20}\)
Vậy,ta có x=\(\sqrt{12}\) y=4 z=\(\sqrt{20}\)
Xin lỗi bạn mình làm sai mình sẽ làm lại
Cách 1:
Ta có: \(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\left(1\right)\)
Thay (1) vào \(2x^2+2y^2-3z^2=-100\)ta được :
\(2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=-100\)
\(\Leftrightarrow2.9k^2+2.16k^2-3.25k^2=-100\)
\(\Leftrightarrow18k^2+32k^2-75k^2=-100\)
\(\Leftrightarrow-25k^2=-100\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow k=\pm2\)
TH1: Thay \(k=2\)vào (1) ta được :
\(\hept{\begin{cases}x=2.3=6\\y=2.4=8\\z=2.5=10\end{cases}}\)
TH2: Thay \(k=-2\)vào (1) ta được :
\(\hept{\begin{cases}x=-2.3=-6\\y=-2.4=-8\\z=-2.5=-10\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left\{\left(6,8,10\right);\left(-6,-8,-10\right)\right\}\)
a) Tìm 3 số x,y,z biết x:y:z=2:4:6 va 3x-y+z=24
b) Tim 3 số x,y,z biết x,y,z tỉ lệ nghịch 6,10,4 và x+2y-3z=115
a) Theo đề bài, ta có:
\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)
\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)
\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)
Vậy\(x,y,z\) lần lượt là: \(6,12,18\)
b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:
\(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)
Theo tính chất của dãy tỉ số bằng nhua, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)
\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)
\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)
\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)
Vậy x, y, z lần lượt là: -50; -30; -75
Ta có:
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)
x+2y-3z=115
Áp dụng tính chất của dãy tỉ số bằng nhau
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)=EQ\F(x+2y-3z,6+20-12)=EQ\F(115,14)
EQ\F(x,6)=EQ\F(115,14)=>x=EQ\F(345,7)
EQ\F(y,10)=EQ\F(115,14)=>y=EQ\F(575,7)
EQ\F(z,4)=EQ\F(115,14)=>z=EQ\F(230,7)
Vậy x=EQ\F(345,7)
y=EQ\F(575,7)
z=EQ\F(230,7)
bài 1 : tìm x ; y biết 4x=7y và x^2+y^2=260
bài 2 tìm x;y;z biết
x/y/z=3:5:(-2)và 5x -y+3z=-16
bài 3 tìm x;y;z biết x:y:z =4/5/6 và x^2-2y^2+z^2=18
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
tìm x ,y , z biết
x:y:z =3:4:5 và \(5z^2-3z^2-2y^2=594\)
Từ \(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{3x^2}{27}=\dfrac{2y^2}{32}=\dfrac{5z^2}{125}\)
Theo t/c dãy số bằng nhau :
\(\dfrac{3x^2}{27}=\dfrac{2y^2}{32}=\dfrac{5z^2}{125}=\dfrac{5z^2-2y^2-3x^2}{125-32-27}=\dfrac{594}{66}=9\)
\(\Rightarrow3x^2=9\cdot27=243\Rightarrow x^2=\dfrac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)
\(\Rightarrow2y^2=9\cdot32=288\Rightarrow y^2=\dfrac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)
\(\Rightarrow5z^2=9\cdot125=1125\Rightarrow z^2=\dfrac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)
tìm x,y,z biết:
\(x:y:z=3:4:5.và2x^2+2y^2-3z^2=-100\)
xy:z=3:4:5
=>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}<=>\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)
=> x=4;-4
y=8,-8
z=10;-10