Cho đa giác đều n cạnh. Tìm n biết các góc đều nhọn
b2 cho biết đa giác đều là đa giác cả tất cả các cạnh bằng nhau tất cả các góc bằng nhau
â) tính số đo mỗi góc của;ngũ giác đều , lục giác đều
b)tính số đo mỗi góc của;1 đa giác đều với n cạnh
Tìm tất cả các số tự nhiên n sao cho các đa giác đều n cạnh, n+1 cạnh, n+2 cạnh, n+3 cạnh đều có số đo mỗi góc là 1 số nguyên độ
Cho đa giác đều n cạnh. Biết số đo mỗi góc bằng 140 o . Tìm n?
A. n = 9
B. n = 8
C. n = 7
D. n = 10
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A
Điền vào chỗ trống trong các câu sau :
a) Biết rằng tổng số đo các góc của một đa giác n cạnh là \(\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+.....+\widehat{A}_n=\left(n-2\right).180^0\). Vậy tổng số đo các góc của một đa giác 7 cạnh là .......
b) Đa giác đều là đa giác có .....
c) Biết rằng số đo mỗi góc của một đa giác đều n cạnh là \(\dfrac{\left(n-2\right).180^0}{n}\), vậy :
Số đo mỗi góc của ngũ giác đều là ..............
Số đo mỗi góc của lục giác đều là ..............
a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)
biết các đường chéo nối một đỉnh của đa giác n cạnh với các đỉnh còn lại của đa giác chia đa giác thành n-2 tam giác. một đa giác đều có tổng các góc trong là 1440 đọ. tính số đo mỗi góc của đa giác
Mỗi góc của một đa giác đều n cạnh bằng 156°. Tìm n
Ta có: ( n − 2 ) .180 0 n = 156 0 . Từ đó, tìm được n = 15
Mỗi góc đa giác đều n cạnh bằng 108 độ . Tìm n
Mỗi góc của đa giác đều n cạnh bằng 108 độ . Tìm n
Mỗi góc của đa giác đều n cạnh bằng 108 độ . Tìm n
Tổng số đo các góc ngoài của đa giác bằng \(360^o\)
Số đo một góc trong của hai đa giác đều là :
\(468^o-360^o=108^o\)
Gọi n là số cạnh của đa giác đều . Ta có số đo của mỗi đa giác đều bằng \(\frac{\left(n-2\right).180}{n}\)
\(=\frac{\left(n-2\right).180^o}{n}\)\(=108^o=180^o.n-360^o=108^o.n=72n=360^o=n=5\)
Vậy \(n=5\)