cho biết a^2+b^2=2 tính M=(4a^4-8a^2) + (4b^4-8b^2) + 8a^2b^2
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
\(P=\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\frac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\ge\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+2}+\frac{bc^2}{c^2+2}+\frac{ca^2}{a^2+2}\right)\)
\(=6-\left(\frac{2ab^2}{b^2+4+b^2}+\frac{2bc^2}{c^2+4+c^2}+\frac{2ca^2}{a^2+4+a^2}\right)\ge6-\left(\frac{2ab}{b+4}+\frac{2bc}{c+4}+\frac{2ca}{a+4}\right)\)
\(=6-\left(2a+2b+2c-\frac{8a}{b+4}-\frac{8b}{c+4}-\frac{8c}{a+4}\right)\)
\(=\frac{8a}{b+4}+\frac{8b}{c+4}+\frac{8c}{a+4}-6=\frac{8a^2}{ab+4a}+\frac{8b^2}{bc+4b}+\frac{8c^2}{ca+4c}-6\)
\(\ge\frac{8\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+4\left(a+b+c\right)}-6\ge\frac{288}{\frac{\left(a+b+c\right)^2}{3}+24}-6=2\)
tìm a, b để hệ phương trình sau có nghiệm
\(\hept{\begin{cases}\left(2a+b+1\right)x+\left(a-2b-2\right)y=5a\\\left(3a^2+4b^2+2\right)x+\left(2a^2-8b^2-4\right)y=8a^2\end{cases}}\)
Bài 1: chỉ ra chỗ sai của một trong hai vế và sửa lại cho đúng các hằng dẳng thức
a) x^2 - 2xy + 4y^2 = (x - 2y)^2
b) a^2 + 24ab + b^2 = (4a + 3b)^2
c) 9x^2 + 6xy + y^2 = (3x - y)^2
d) a^3 - 8a^2b + 6ab^2 - 8b^3 = (a - 2b)^3
cho các số a, b, c, d thỏa mãn 3a +2b -c -d=1; 2a+2b-c+2d=2; 4a- 2b- 3c+d=3; 8a+b-6c+d=4. tính giá trị của a+b+c+d
Tìm a ,b biết: \(2a^2+2b^2-8a-8b+2ab+10=0\)
cho a, b thỏa mãn \(\dfrac{a^2+b^2}{a-2b}=2\)
tìm giá trị lớn nhất của P = 8a +4b
3a + 2b - c - d = 1
2a + 2b - c + 2d = 2
4a - 2b -3c + d = 3
8a + b - 6c + d = 4
Tính a + b+ c+d
Cho các số a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c+2d= 2; 4a-2b-3c+d=3; 8a+b-6c+d=4 . Tính a+b+c+d
=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1
<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2
<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2
-a-b-c-d=-2
-(a+b+c+d)=-2
=>a+b+c+d=2
Vậy a+b+c+d=2