Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn nhật nam
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:15

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:17

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
31 tháng 10 2017 lúc 6:13

đúng rồi

Nguyễn Văn Hòa
1 tháng 11 2017 lúc 19:05

 chó điên

forever young
Xem chi tiết
Sang Huỳnh Tấn
Xem chi tiết
Tuấn
Xem chi tiết
Do Hoang Trung
10 tháng 2 2017 lúc 12:04

=4 nhé

Tuấn
10 tháng 2 2017 lúc 12:05

nó bảo sai bạn ạ

Nguyễn Phương Uyên
10 tháng 2 2017 lúc 12:08

chắc la sai ở chỗ nào rồi

Minh Triều
Xem chi tiết
phan tuấn anh
17 tháng 7 2016 lúc 19:51

ko phải tìm số nguyên a;b à 

Minh Triều
17 tháng 7 2016 lúc 20:30

j cũng dc nói nói tìm dc là dc -_-

Ngọc Vĩ
17 tháng 7 2016 lúc 20:54

Bài này quen quen

Minh Hà Tuấn
Xem chi tiết
Biokgnbnb
Xem chi tiết
Nguyễn Võ Văn Hùng
Xem chi tiết
Quốc Đạt
8 tháng 2 2017 lúc 22:32

=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1

<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2

<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2

-a-b-c-d=-2

-(a+b+c+d)=-2

=>a+b+c+d=2

Vậy a+b+c+d=2