Tính nhanh tổng A :
A =\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
Tính tổng A theo cách nhanh nhất :
A = 5 + \(\frac{5}{1+2}+\frac{5}{1+2+3}+\frac{5}{1+2+3+4}+.....+\frac{5}{1+2+3+...+100}\)
\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)
\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)
\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=10x\left(1-\frac{1}{101}\right)\)
\(=10x\frac{100}{101}\)
\(=\frac{1000}{101}\)
tính nhanh
A= \(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+......+\frac{3}{1+2+3+4+.....+100}\)
bạn giải giúp mk bài này nhé
cầu xin bạn tại mk đang cần gấp huhuhu
Tính tổng A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}} \)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\left(1\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\left(2\right)\)
Lấy (2) - (1) ta được:\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2A=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(\frac{3^{100}-1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\frac{3^{100}-1}{2.3^{100}}\)
Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Bạn phải giải thích cụ thể ra cho mk biết chứ
A× 3 = 1+ 1/3 + 1/3^2 + ...+ 1/3^99
A×3-a = 1- 1/ 3^100
A= (1/3^100): 2
tính tổng
A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)(1)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)(2)
Lấy (2) trừ đi (1) ta có :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{\left(1-\frac{1}{3^{100}}\right)}{2}\)
1. Tính tổng
\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+\frac{1}{3x4x5}+.....+\frac{1}{18x19x20}\)
2. Tính nhanh
B = 1 x 1 + 2 x 2 + 3 x 3 + ......+ 100 x 100
3. Tính tổng
A = 4 + 16 + 36 + 64 +.....+ 10000
4. Tính tổng:
M = 1 + 9 + 25 + 49 + 9801
5. Tính nhanh:
\(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\right):\left(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{99x100}\right)\)
Nhớ cho mình cách giải nha. Ai làm nhanh, làm đúng sẽ được 10 tick
Tính tổng :
1, A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.................+\frac{1}{100}\)
2, B = \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....................+\frac{99}{100}\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
Tính tổng: A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
ta có 3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)