Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Dưa Dưa Tiểu
Xem chi tiết
Thiên An
29 tháng 6 2017 lúc 20:29

Gọi cái vế trái của BĐT cần c/m là P

Áp dụng  BĐT Cô-si dạng  \(\frac{1}{a+b+c+x+y+z}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b = c = x = y = z

và  \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b = c = x = y = z

Ta có  \(\frac{1}{10a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)}\)

\(\le\frac{1}{36}\left(\frac{1}{a+b}+\frac{1}{a+c}+4.\frac{1}{a+a}\right)\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2}{a}\right]\)

\(=\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{2}{a}\right]\)   (1)

Tương tự  \(\frac{1}{10b+c+a}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{b}+\frac{1}{c}+\frac{1}{a}\right)+\frac{2}{b}\right]\)   (2)

và   \(\frac{1}{10c+a+b}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)+\frac{2}{c}\right]\)   (3)

Cộng (1), (2), (3) vế theo vế ta được

\(P\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)+\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\right]=...=\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Kết hợp  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}\)  (theo đề bài) và BĐT  \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Ta có  \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{144}\left[\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right]\)

\(\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)

Suy ra  \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)

Đặt  \(t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)  thì  \(\frac{1}{144}t^2\le\frac{1}{144}\left(\frac{1+t}{6}+\frac{2t^2}{3}\right)\)

\(\Leftrightarrow\)  \(2t^2-t-1\le0\)  \(\Leftrightarrow\)  \(\frac{-1}{2}\le t\le1\)

Do đó  \(P^2\le\frac{1}{144}t^2\le\frac{1}{144}.1^2=\frac{1}{144}\)  \(\Rightarrow\)  \(P\le\frac{1}{12}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(a=b=c=3\)

Thiên An
29 tháng 6 2017 lúc 20:32

mk nhầm cái đoạn  \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)  đẳng thức xảy ra  \(\Leftrightarrow\)  a = b

alibaba nguyễn
30 tháng 6 2017 lúc 10:42

Ta có:

\(\frac{1}{a^2}+\frac{1}{9}+\frac{1}{b^2}+\frac{1}{9}+\frac{1}{c^2}+\frac{1}{9}\ge\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{3}\)

\(\Rightarrow6\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)

\(\Rightarrow1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le1\)

Theo đề bài thì ta có:

\(\text{Σ}\left(\frac{1}{10a+b+c}\right)\le\frac{1}{144}\text{Σ}\left(\frac{10}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\dfrac{1}{144}\left(\dfrac{12}{a}+\dfrac{12}{b}+\dfrac{12}{c}\right)=\dfrac{1}{12}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{12}\)

Baek Hyun
Xem chi tiết
☆☆《Thiên Phi 》☆☆
29 tháng 5 2019 lúc 21:08

bn tham khảo câu hỏi tương tự nha!

hok tốt!

Nguyễn Ngọc Khánh Ly
Xem chi tiết
Love
Xem chi tiết
Hùng Quân Mai
Xem chi tiết
Cù Nhật Hoàng
Xem chi tiết
dbrby
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:21

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

Khách vãng lai đã xóa
bach nhac lam
11 tháng 2 2020 lúc 21:42

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

Khách vãng lai đã xóa