chứng minh rằng:
21995-1 chia hết cho 31
(làm bằng cách đồng dư nhé)
chứng minh \(70\times27^{1001}+31\times38^{101}\)chia hết cho 13 (giải bằng 2 cách (trong đó có 1 cách dùng đồng dư)
Chứng minh rằng : 22002 - 4 chia hết cho 31 ( giải bằng đồng dư )
\(2^5=32\equiv1\left(mod31\right)\)
\(\Rightarrow\left(2^5\right)^{400}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\times2^2\equiv2^2\)( mod 31)
\(\Rightarrow2^{2002}\equiv4\)( mod 31)
\(\Rightarrow2^{2002}-4\equiv0\)( mod 31)
iwjdfìewaohdòihódfuhtAao xdem sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssex lko dSVOKJDưgeohqởigie
Chứng minh rằng nếu 6x +11y chia hết 31 , x , y thuộc Z thì x + 7y cùng chia hết 31
Giải cách làm thật rõ nhé !
6x+11y chia hết 31
=>6x+11y+31y chia hết 31
=> 6x+42y chia hết 31
=> 6(x+7y) chia hết 31
Vì 6 và 31 nguyên tố cùng nhau
=> x+7y chia hết 31
Vậy........
Bạn có hiểu không? Không hiểu thì hỏi nhé!
a,chứng minh n(n+1)(n+2) chia hết 6 , mọi n thuộc N
b, cho 6x+11ychia hết 31 chứng minh x+7y chia hết 31
ai trả lời nhanh mình like, cách làm nữa nhé
Chứng minh rằng 2^2^2n + 5 chia hết cho 7
Làm theo đồng dư thức nhé mn
Mình đang cần gấp
chứng minh rằng:
1961^1962+1963^1964+1965^1966+2 chia hết cho 7
làm giúp mìh theo cách đồng dư nka!:)
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Chứng minh bằng đồng dư thức :
22002 - 4 chia hết cho 31
chtt
các bạn cho mk vài li-ke cho tròn 600 với
Ta có:
22000=(25)400 =32400
Lại có:
32400-1= 32400-1400 chia hết cho (32-1)
(áp dụng t/c an-bn chia hết cho (a-b) với mọi n)
=>32400-1 chia hết cho 31
=>4.(32400-1) chia hết cho 31
=>4.32400-1 .4 chia hết cho 31
=>22.2200-4 chia hết cho 31
=>22002 chia hết cho 31 (đpcm)
Chứng minh rằng:
\(2^{1995}-1\)chia hết cho \(31\)
ĐỒNG DƯ THỨC
\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)
\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31
Số số hạng của A là 1995 chia hết cho 5
\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM
Chứng minh : 112015 - 1 chia hết cho 2 và 5
Gợi ý : Làm bằng 2 cách :
Cách 1 : Xét chữ số tận cùng
Cách 2 : Dùng đồng dư thức
Ta có:
11 đồng dư với 1 (mod 10)
=> 112015 đồng dư với 12015 (mod 10)
=> 112015 đồng dư với 1 (mod 10)
=> 112015 - 1 đồng dư với 1 - 1 (mod 10)
=> 112015 - 1 đồng dư với 0 (mod 10)
=> 112015 - 1 chia hết cho 10
mà 10 chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5
Ta có: 112015 - 1 = (...1) - 1 = (...0) chia hết cho 10
Mà 10 chia hết cho 2 và 5 => (...0) chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5
Monkey D.Luffy khôn v~, éo bt từ tiếg a vt kiểu j` :v
102015 -1 =999..........9 không chia hết cho 2 và 5