So sánh : A= 17^18 + 1 / 17^19+1
Và B =17^17+1 / 17^18+1
So sánh: A=17^18+1/17^19+1 và B= 17^17+1/17^18+1
Nếu nghĩ kĩ thì thấy bài này cũng đơn giản thôi.Thử xem cách giải của mk nè:
Giải: Ta có: A=\(\frac{17^{18}+1}{17^{19}+1}\) B=\(\frac{17^{17}+1}{17^{18}+1}\)
17A=\(\frac{17^{19}+17}{17^{19}+1}\) 17B=\(\frac{17^{18}+17}{17^{18}+1}\)
17A=\(\frac{\left(17^{19}+1\right)+16}{17^{19}+1}\) 17B=\(\frac{\left(17^{18}+1\right)+16}{17^{18}+1}\)
17A=\(\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\) 17B=\(\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)
17A=\(1+\frac{16}{17^{19}+1}\) 17B= \(1+\frac{16}{17^{18}+1}\)
Lại có: 1719+1>1718+1
Suy ra:\(\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
17A<17B
A<B
Vậy A<B
\(\text{Ta có:}\frac{17^{18}+1}{17^{19}+1}\)
\(\Rightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Rightarrow17A=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(\Rightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Rightarrow17B=1+\frac{16}{17^{18}+1}\)
\(\text{Vì }\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
So sánh A và B biết:
A=\(\dfrac{17^{18}+1}{17^{19}+1}\) , B=\(\dfrac{17^{17}+1}{17^{18}+1}\)
\(17A=\dfrac{17^{19}+17}{17^{19}+1}=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
Vì \(17^{19}>17^{18}=>17^{19}+1>17^{18}+1\)
\(=>\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)
\(=>17A< 17B=>A< B\)
so sánh: A= 1718+1/1719+1 và B= 1717+1/1718+1
Ta có: \(A=\frac{17^{18}+1}{17^{19}+1}
Để so sánh A =1718+1/1719+1 và B=1717+1/1718+1
=>Ta xét bài toán phụ sau
a/b<1 thì a/b<a+/b+m
vì a/b<1=>a<b mà m thuộc N*
=>a.m<b.m=>ab+am<ab+bm
a/b=a.(b+m0/b.(b+m)/b(b+m=ab+am/b(b+m)<ab+bm/b(b+m)
Vì b(b+m)>0=>a/b<ab+bm/b(b+m)=b(a+m)/b(b+m)=a+m/b+m
=>.a/b<a+m/b+m(1)
vì 1718+ 1 < 1719+1
=>A<1
(1)=>1718+1/1719+1<1718+1+16/1719+1+16
<=>A<1717+17/1719+17=17(1717+1)/1791718+1)
<=>A<1717+1/1718+1=B
<=>A<B
Vậy...
so sánh :A=1718+1/1719+1; B=1717+1/1718+1
A=17^18+1/17^19+1 và B=17617+1/17^18+1. so sánh a và b
17/18 - 1/6 bằng bao nhiêu
so sánh : A=1718+1/1719+1 và B=1717+1/1718+1
1) Phân tích A ra :
A= 1717.17+$\frac{1}{17^{18}.17}$11718.17 +1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.
Mà 1718>1/1718 nên suy ra A>B
So sánh a và b biết
A= 17 mũ 18 + 1 phần 17 mũ 19 + 1
B = 17 mũ 17 + 1 phần 17 18 phần 1
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+17}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)
\(\Leftrightarrow17A=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+17}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17B=1+\frac{16}{17^{18}+1}\)
Vì \(1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\) nên 17B > 17A
Suy ra B > A
so sánh A= 1718 + 1 / 1719 + 1 và B = 1717 + 1 / 1718 +1
Giải
\(A=\frac{17^{18}+1}{17^{19}+1}\Leftrightarrow17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+17}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)
\(\Leftrightarrow17A=1+\frac{16}{17^{19}+1}\left(1\right)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\Leftrightarrow17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+17}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17B=1+\frac{16}{17^{18}+1}\left(2\right)\)
Từ (1) và (2) suy ra 17A < 17B
Suy ra A < B
So sánh A=\(\frac{17^{18}+1}{17^{19}+1}v\text{à}B=\frac{17^{17}+1}{17^{18}+1}\)
ta có A=\(\frac{17^{18}+1}{17^{19}+1}\)<\(\frac{17^{18}+1+16}{17^{19}+1+16}\) (nếu a/b<1 thì a+c/b+c>a/b)
A<\(\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}\)
A,<\(\frac{17^{17}+1}{17^{18}+1}\)=B
hay A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\) với \(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta có :B=\(\frac{17^{17}+1}{17^{18}+1}=\frac{17^{18}+17}{17^{19}+17}\)
Ta có:1-B=\(1-\frac{17^{18}+17}{17^{19}+17}=\frac{17^{19}+17-17^{18}-17}{17^{19}+17}=\frac{17^{19}-17^{18}}{17^{19}+17}\)
1-A=1-\(\frac{17^{18}+1}{17^{19}+1}=\frac{17^{19}+1-17^{18}-1}{17^{19}+1}=\frac{17^{19}-17^{18}}{17^{19}+1}\)
Do \(17^{19}+1< 17^{19}+10\Rightarrow1-A>1-B\)
\(\Rightarrow A< B\)