Giải hpt:\(\hept{\begin{cases}x\left(x+1\right)\left(3x+5y\right)=144\\x^2+4x+5y=24\end{cases}}\)
giải hpt
\(\hept{\begin{cases}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{cases}}\)
căn 4x-5y - 3 nha
help me
#mã mã#
\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
giải hộ mk hpt này vs , mk cảm ơn
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
Giải HPT \(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\end{cases}}\)
\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)
\(ĐK:x>-1;y\ge1\)
Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)
Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)
Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)
hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)
Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)
Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)
\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)
\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)
Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)
\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)
Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)
+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)
+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)
Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)
em chịu chị ơi
các bn giả hộ mình ko biết cảm ơn
Giải hpt:
\(\hept{\begin{cases}10x^2+5y^2-12xy-x-y=8\\\left(x-1\right)\sqrt{y-2}+\left(y-1\right)\sqrt{x+2}=5\end{cases}}\)
DDệ rứa mà (ai bt bayf vois nhaaa tui chiuj cứng lun goif)
Giải HPT: \(\hept{\begin{cases}xy+y^2+x-5y=0\\\left(x+y\right)\frac{x}{y}=6\end{cases}}\)
giải hệ phương trình \(\hept{\hept{\begin{cases}x-5y=-20\\\left(1+x\right)\left(1+2x\right)\left(1+3x\right)=\left(1+3y\right)\left(1+3y+2x^2\right)\end{cases}}}\)
Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)
<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)
<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)
Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)
Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
giải hệ phương trình
a)\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
b)\(\hept{\begin{cases}\frac{1}{x+y}-\frac{2}{x-y}=2\\\frac{5}{x+y}-\frac{4}{x-y}=3\end{cases}}\)
c)\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
d)\(\hept{\begin{cases}2xy+2=3x\\5y-\frac{2}{x}=4\end{cases}}\)
e)\(\hept{\begin{cases}2\sqrt{x-1}+3\sqrt{y-2}=5\\3\sqrt{x-1}-\sqrt{y-2}=2\end{cases}}\)
MỌI NGƯỜI GIÚP MK LM MẤY BÀI NÀY NHA MK CẦN GẤP LẮM LUÔN
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
c,\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2+2x^2-y^2=13-7\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x^2=6\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm1\\y=\pm3\end{cases}}\)
\(\hept{\begin{cases}4\left(x-5y\right)+3\left(3x+4\right)=7\\5\left(x-3y\right)-2\left(3x-y\right)=3\end{cases}}\)
\(4\left(x-5y\right)+3\left(3x+4\right)=7\Leftrightarrow4x-20y+9x+12=7\Leftrightarrow13x-20y=-5\)(1)
\(5\left(x-3y\right)-2\left(3x-y\right)=3\Leftrightarrow5x-15y-6x+2y=3\Leftrightarrow-x-13y=3\)
\(\Leftrightarrow13x+169y=-39\)(2)
Từ (1) và (2), ta có: \(\hept{\begin{cases}13x-20y=-5\\13x+169y=-39\end{cases}}\Leftrightarrow\hept{\begin{cases}13x+169y-\left(13x-20y\right)=-39-\left(-5\right)\\13x+169y=-39\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}189y=-34\\x+13y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{-34}{189}\\x=\frac{-125}{189}\end{cases}}\)