Cho 3 số lẻ bất kì
Chứng minh rằng : tồn tại 2 số trong 3 số trên mà có tổng hoặc hiệu chia hết cho 8
Giup mk vs nha!Càng nhanh càng tốt
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 8 số tự nhiên bất kì khi chia cho 15 có số dư lẻ luôn tồn tại hai số có hiệu chia hết cho 15
Theo đề bài các số dư ={1;3;5;7}
=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b
\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Chứng minh rằng trong 1010 số tự nhiên bất kì luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 2015
*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....
*Sau đó ta chia 1010 thành 1009 nhóm
*Theo nguyên lý Dirichlet ta có 2 trường hợp
Ta có ĐPCM
Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn
Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9
Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!
Chứng minh rằng trong 11 số nguyên bất kì bao giờ cũng tồn tại một số chia hết cho 10 hoặc tồn tại ít nhất hai số có hiệu chia hết cho 10?
Xem phần chứng minh tồn tại ít nhất 2 số có hiệu chia hết cho 10 tại đây nhé!
Bạn tham khảo:
Câu hỏi của kiều nguyệt Hằng - Toán lớp 6 - Học toán với OnlineMath
cho 3 số lẻ bất kì . chứng minh có 2 số có tổng hoặc hiêu chia hết cho 8
Vì có 3 số lẻ nên số dư khi chia cho số 8 thì là các số : 1 ; 3 ; 5 ; 7
Chia làm 2 nhóm : nhóm 1 có số dư là : 1 và 7
nhóm 2 có số dư là 3 và 5
Xảy ra 2 trường hợp :
Trường hợp 1 : 3 số lẻ trên thuốc 1 trong 2 nhóm đã chia
Mà tổng của 1 số dư 1 và 1 số dư 7 bao giờ cũng chia hết cho 8
và tổng của 1 số dư 3 và 5 cũng chia hết cho 8
=> tổng của 2 số đó chia hết cho 8
Trường hợp 2 : 3 số lẻ trên không thuộc 2 nhóm đã chia
=> phải có 2 số có cùng số dư
=> hiệu của chúng phải chi hết cho 8
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Bài 1: Cho 3 số lẻ. Chứng minh rằng: Tồn tại hai số có tổng hoặc hiệu chia hết cho 8
Bài 2: Tìm x,y thuộc N biết ( x + 1 ).( 2y - 5 ) = 143
B =2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4
Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có:
B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2
Ta lại có: a – b2 = - 2(x2y2+y2z2+z2x2) và b –c2 = - 2(xy + yz + zx) Do đó;
B = - 4(x2y2+y2z2+z2x2) + 4 (xy + yz + zx)2
= -4x2y2-4y2z2-4z2x2+4x2y2+4y2z2+4z2x2+8x2yz+8xy2z+8xyz2=8xyz(x+y+z)
Chứng minh trong 1010 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 2015
Chứng minh trong 27 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50