√(x+3)*x^4=2x^4+2017x-2017
help me
Tính giá trị của đa thức sau biết x=2018
N=x^6-2017x^5-2017x^4-2017x^3-2017x^2-2017x-2017
Help me :(((
Ta có : x - 1 = 2018 - 1 = 2017
N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017
N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )
N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1
N = 1
1. Tính giá trị của biểu thức:
\(x^5 - 2017x^4 + 2017x^3 - 2017x^2 + 2017x - 1000\) tại x = 2006
2. Tính giá trị của biểu thức:
\(2x^4 +5x^3 - 29x + 80\) tại x thỏa mãn \(x^3 + 2x^2 -x-14=0\)
Câu 2 :
Ta có : \(x^3+2x^2-x-14=0\)
=> \(x^3-2x^2+4x^2-8x+7x-14=0\)
=> \(x^2\left(x-2\right)+4x\left(x-2\right)+7\left(x-2\right)=0\)
=> \(\left(x-2\right)\left(x^2+4x+7\right)=0\)
=> \(\left[{}\begin{matrix}x-2=0\\x^2+4x+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x^2+4x+4+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\\left(x+2\right)^2=-3\left(VL\right)\end{matrix}\right.\)
=> \(x=2\)
- Ta có : \(2x^4+5x^3-29x+80\)
\(=2x^4-4x^3+9x^3-18x^2+18x^2-36x+7x-14+94\)
\(=2x^3\left(x-2\right)+9x^2\left(x-2\right)+18x\left(x-2\right)+7\left(x-2\right)+94\)
\(=\left(2x^3+9x^2+18x+7\right)\left(x-2\right)+94\left(I\right)\)
- Thay x = 2 vào biểu thức ( I ) ta được :
\(\left(2.2^3+9.2^2+18.2+7\right)\left(2-2\right)+94\)
\(=\left(2.2^3+9.2^2+18.2+7\right)0+94\)
\(=0+94\)
\(=94\)
Vậy giá trị của biểu thức trên là 94 .
Tính giá trị biểu thức :
a, N = \(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2025\)
tại x = 2016
b, Q = \(2017x^{2016}+2016x^{2015}+2015x^{2014}+...+3x^2+2x+1\)
tại x = ( -1 )
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
Tìm tập xác định:
\(y=\frac{\sqrt{2x+10-6\sqrt{2x+1}}}{\left|3x^2+5\right|x\left|-2\right|}-\frac{2017x}{\sqrt[3]{2017x-\left|2017x\right|}}\)
Xét tính chẵn lẽ của hàm số \(y=f\left(x\right)=\frac{\left|2017x-10\right|-\left|2017x+10\right|}{x^6-8x^4+16x^2}\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}2x+1\ge0\\3\left|x\right|^2+5\left|x\right|-2\ne0\\x-\left|x\right|\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\\left|x\right|\ne\frac{1}{3}\\x< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{2}\le x< 0\\x\ne-\frac{1}{3}\end{matrix}\right.\)
b/ Nếu \(x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\frac{\left|-2017x-10\right|-\left|-2017x+10\right|}{x^6-8x^4+16x^2}\)
\(=\frac{\left|2017x+10\right|-\left|2017x-10\right|}{x^6-8x^4+16x^2}=-\frac{\left|2017x-10\right|-\left|2017x+10\right|}{x^6-8x^4+16x^2}=-f\left(x\right)\)
Hàm lẻ
Phân tích các đa thức sau thành nhân tử:
a, x^3 - x^2 - 8x +12
b, x^3 -4x^2 - 11x +30
c, 8x^2 +10x -3
d, 8x^2 -2x -1
e, x^3 +x -2
f, x^3 +3x^2 -4
g, x^3 y^3+x^2 y^2+4
h,x^3-2x-1
l,4x^4+y^4
k,x^5+x^4+1
m, 64x^4+y^4
n,81x^4+4
i, x^8+14x^4+1
p, a^3+b^3+c^3-3abc
q, x(x+4)(x+6)(x+10)+128
r, (2017x-1)^3-(2018x^3-2019)^3+(2018x^3-2017x-2018)^3
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
Tính với \(x=2016\)
Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên = 1
Hok tốt!
Tính giá trị biểu thức
A=x^3+3x^2+3xvs x=1999
B=x^4-2017x^3+2017x^2-2017x+2018 tại x=2016
\(A=x^3+2x^2+3x\\ =x\left(x^2+2x+1\right)\\ =x\left(x+1\right)^2\\ =1999.\left(1999+1\right)=1999.2000\\ =3998000\)
\(B=x^4-2017x^3+2017x^2-2017x+2018\\ =x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2016+2\\ =x^3\left(x-2016\right)-x^3\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+2\\ =\left(x-2016\right)\left(x^3+x-1\right)+2=0+2=0\)
Bạn xem lại đề câu a nhé , theo mk thì phải là 2 thì tính ms nhanh đc, 3 thì cũng giải đc nhưng ko hợp lí lắm
x6 - 2017x5 + 2017x4 - 2017x3 + 2017x2 - 2017x+2017
Tính với x=2016
Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên bằng 1
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\) (1)
Thay 2017 = x+1 vào (1) ,có :
\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
= \(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
= 1
Cho F(x) = 2017x3 - x2 + 2x + 3
G(x) = 2017x3 - 2x2 + 2x - 2014
H(x) = F(x) - H(x). Chứng minh H(x) không có nghiệm ?
F(x) = 2017x3 - x2 + 2x + 3
-
G(x) = 2017x3 - 2x2 + 2x - 2014
____________________
H(x) = x2 + 2017
Ta có H(x) = x2 + 2017
Với mọi x , ta có :
x2 luôn luôn lớn hơn hoặc bằng 0
2017 > 0
=> H > 0
Vậy đa thức H không có nghiệm
Chúc Các Bạn Học Tốt