Tính nhanh:
1/15+1/35+1/63+...+1/399
cách giải bài : 1^15+1^35+1^63+1^99+...+1^399+1^483. tính b
Tính nhanh :a) 4/3x7 +4/7x11 +4/11x15 +...+4/ 107x111
b )2/15 +2/35 +2/63 +...+ 2/399
c)1/25x27 +1/27x29 +1/29x31 +...+ 1/73x75
Tính tổng :
B= 1/1.5+1/5.9+1/9.13+...+1/93.97
C= 3/1.3+3/3.5+3/5.7+...+3/97.99
D= 1/10+1/15+1/20+...+1/120
E= 2/15+2/35+2/63+...+2/399
Ai nhanh mk tick làm nhanh nhé mk cần gấp lắm
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
A=1/3+1/6+1/10+1/15+...+1/66
B= 2/15+2/35+2/63+..+2/399
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+...+\frac{2}{19×21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
A=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+...+\(\frac{1}{66}\)
A=\(\frac{1}{1\cdot3}\) +\(\frac{1}{2\cdot3}\) +\(\frac{1}{2\cdot5}\)+...+\(\frac{1}{6\cdot11}\)
A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{11}\)
A=\(\frac{1}{1}-\frac{1}{11}\)
=>A=\(\frac{10}{11}\)
B=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
2B=\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\)
2B=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
2B=\(\frac{1}{3}-\frac{1}{21}\)
2B=\(\frac{2}{7}\)
B=\(\frac{2}{7}:2\)
=>B=\(\frac{1}{7}\)
Bài 1: tính
A=2/15 +2/35 + 2/63 +.......+ 2/399
Ngày 17-3-2018
Bài 1: Tính nhanh:
A= 1/25×27 + 1/27×29 +1/29×31 + ... +1/83×85.
B= 15/90×94 + 15/94×98 +15/98×102 + ... + 15/156×160
C= 2/15 + 2/35 + 2/63 + ... + 2/399
\(A=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{83.85}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{83.85}\)
\(2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{83}-\frac{1}{85}\)
\(2A=\frac{1}{25}-\frac{1}{85}\)
\(2A=\frac{12}{425}\)
\(A=\frac{12}{425}:2\)
\(A=\frac{6}{425}\)
\(C=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(C=\frac{1}{3}-\frac{1}{21}\)
\(C=\frac{2}{7}\)
CÂU B LÀM TƯƠNG TỰ NHA
HOK TOT
a) A= 4/3.7 + 4/7.11 + 4/11.15 +...+ 4/107.111
b) B= 2/15 + 2/35 +2/63+...+ 2/399
c) C= 1/10 + 1/15 + 1/21+ ...+ 1/120
a.\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}=\frac{37}{111}-\frac{1}{111}=\frac{36}{111}=\frac{12}{37}\)
Vậy A=\(\frac{12}{37}\)
b.\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
Vậy \(B=\frac{2}{7}\)
c.\(C=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\right).\frac{1}{2}\)
\(=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{4}-\frac{1}{16}=\frac{4}{16}-\frac{1}{16}=\frac{3}{16}\)
Vậy \(C=\frac{3}{16}\)
A = \(\frac{4}{3.7}+\frac{4}{7.9}+...+\frac{4}{107.111}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}\)=\(\frac{12}{37}\)
2 câu sau tương tự. Mik ngại làm lắm -_-
Tính nhanh : A = 1/15+1/35+1/63+1/99+.....+1/9999
Tính nhanh : 1/15 + 1/35 + 1/63 + 1/99 + .... + 1/9999
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303