Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu Thảo
Xem chi tiết
Lục Thiên Hy
10 tháng 5 2018 lúc 20:41
https://i.imgur.com/CFRjx7Q.png
Trần Ngọc Linh
Xem chi tiết
Nguyễn Đức Hiếu
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

chien Nguyen
Xem chi tiết
Trung Nguyen
Xem chi tiết
trần thành đạt
7 tháng 1 2018 lúc 22:21

A=x^3 +y^3 +z^3+ 2(x/y+z  +y/z+x  +z/x+y)  \(\ge x^3+y^3+z^3+2.\frac{3}{2}\)  (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)

Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)

===> A\(\ge3+3=6\) khi x=y=z=1

Nguyễn Quỳnh Nga
Xem chi tiết
Thiên An
2 tháng 7 2017 lúc 20:11

Vì  \(x+y+z=2\)

Ta có  \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)

Tương tự  \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\)  và  \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)

Do đó  \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)

Vậy  \(P\le4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\)  và x+y+z=2   \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

hilo
Xem chi tiết
Thao Thanh
Xem chi tiết