Rút gọn biểu thức:
\(A=\left[\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right]:\frac{4xy}{y^2-x^2}\)
Giúp nha m.n! thanks!!!
Bài 1 rút gọn biểu thức
A=\(\left(x-\frac{4xy}{x+y}+y\right)\):\(\left(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\right)\)
B=\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\):\(\left(\frac{x^2+4x^2y^2+y^4}{x^2+y+xy+x}\right):\left(\frac{1}{2x^2+y+2}\right)\)
rút gọn biểu thức
A= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
ĐKXĐ : \(x\ne\mp y\) ; \(x,y\ne0\)
Ta có :
\(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2+y^2}\right):\frac{4xy}{y^2-x^2}\)
\(=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x-y\right)\left(x+y\right)}\right):\frac{4xy}{\left(y-x\right)\left(x+y\right)}\)
\(=\left(\frac{x-y}{\left(x-y\right)\left(x+y\right)^2}-\frac{x+y}{\left(x-y\right)\left(x+y\right)^2}\right).\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{-2y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{1}{2x\left(x+y\right)}\)
Vậy..
ĐKXĐ : \(x\ne\pm y\)
Ta có : \(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
=> \(A=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\frac{1}{2x\left(x+y\right)}\)
Rút gọn \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
ĐKXĐ: x2-y2\(\ne\)0 4xy\(\ne\)0
\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)\ne0\) <=>x\(\ne\)0 và y \(\ne\)0
\(\Leftrightarrow x\ne y\) và \(x\ne-y\)
Đặt P= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
<=>\(\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right).\frac{y^2-x^2}{4xy}\)
<=>\(\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right).\frac{-\left(x^2-y^2\right)}{4xy}\)
<=>\(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}=\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}\)
<=>\(\frac{1}{2x\left(x+y\right)}=\frac{1}{2x^2+2xy}\)
Cho biểu thức
A= \(\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a, Nêu điều kiện xác định và rút gọn A
b, Với x,y thỏa mãn 3x2+y2+2x-2y=0.Hãy tìm các giá trị nguyên dương của biểu thức A
Cho biểu thức A=\(\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) Rút gọn A
b) Tìm x,y thỏa mãn \(3x^3+y^2+2x-2y-1=0\)và A=2
Giúp mình phần b với
Câu a) bạn Despacito làm sai kq r. Kq dúng là A=2x(x+y).
Câu b)
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow2x^2+2xy+x^2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)+1-2=0\)
\(\Leftrightarrow2A+\left(x-y+1\right)^2-2=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow x-y=-1\)
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
\(A=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\left[\frac{1}{\left(y-x\right)\left(y+x\right)}+\frac{1}{\left(x+y\right)^2}\right]\)
\(A=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\left[\frac{x+y}{\left(y-x\right)\left(x+y\right)^2}+\frac{y-x}{\left(y-x\right)\left(x+y\right)^2}\right]\)
\(A=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\frac{x+y+y-x}{\left(y-x\right)\left(x+y\right)^2}\)
\(A=\frac{4xy}{\left(y-x\right)\left(y+x\right)}.\frac{\left(y-x\right)\left(x+y\right)^2}{2y}\)
\(A=x\left(x+y\right)\)
Cho biểu thức :
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
a) Rút gọn A và tìm giá trị x,y để A = 0
b ) tìm giá trị x,y nguyên thỏa mãn \(A=x^3+xy+x+y+1\)
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)
Cho biểu thức \(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) Rút gọn A
b) Nếu x,y là các số thực làm cho A xác định và thỏa mãn \(3x^2+y^2+2x-2y=1\), hãy tìm tất cả các giá trị nguyên dương của A
Giúp mình phần b với
(a) làm được rồi port lên luôn vì (b) cần cái KQ của (a)
\(\)cho biểu thức :
\(P=\left(\frac{4xy}{y^2-x^2}\right):\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) rút gọn P
b) nếu x,y là các số thực thỏa mãn :\(3x^2+y^2+2x-2y=1\)hãy tìm tất cả các giá trị nguyên dương của P
CÂU A MÌNH LÀM LƯỢC RỒI CÒN CÂU BCACS BẠN GIÚP MÌNH NHÉ !
\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y
\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)
\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực
Vì P nguyên dương => P=1
Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)
vì x khác y
Cho biểu thức
\(H=\left(\frac{1}{x-2y}+\frac{6y}{4y^2-x^2}-\frac{2}{x+2y}\right):\left(\frac{x^2+4y^2}{x^2-4y^2} +1\right)\)
a) Rút gọn H
b) Tìm x thuộc Q để H thuộc Q.
GIÚP MK NHA M.N! THANKS!!!